Como se preparar para o Enem 2024

Como se preparar para o ENEM 2024: dicas, conteúdos e estratégias

Descubra como se preparar para o ENEM 2024 com dicas para matérias de exatas e história. Aprenda macetes para decorar fórmulas e revise eventos históricos importantes.

08 de agosto de 2024
...

O Exame Nacional do Ensino Médio (ENEM) é uma das principais portas de entrada para o ensino superior no Brasil. Preparar-se adequadamente para essa prova é essencial para garantir uma boa performance.  

Mas, antes de entrarmos em dicas práticas, vamos entender um pouco sobre a relevância do ENEM para os brasileiros.  

Criado em 1998 pelo Ministério da Educação (MEC), o ENEM, primeiramente, tinha como objetivo apenas diagnosticar o nível educacional aplicado no Brasil, seria uma forma de analisar e sugerir pontos para melhorá-lo.  

Porém, em 2009, passou a ser a porta de entrada para o ensino superior, possibilitando que os participantes tenham acesso ao SISU (Sistema de Seleção Unificada) e ao ProUni (Programa Universidade para Todos) e também possam se candidatar às instituições de Portugal.  

Bem, agora que você já está por dentro da importância do ENEM, vamos entender um pouco sobre a estrutura técnica desse exame. 

Estrutura do ENEM 2024

Estrutura do ENEM 2024

Na edição de 2024, a prova será realizada em dois domingos consecutivos, nos dias 3 e 10 de novembro e será composta por 180 questões e uma redação.  

Confira a composição do exame:  
1º dia: Redação; 45 questões de Linguagens e Códigos; 45 questões de Ciências Humanas. 
2º dia: 45 questões de Ciências da Natureza; 45 questões de Matemática. 

Para ficar mais fácil de se organizar, fique ligado nas matérias que serão cobradas em cada uma das áreas de conhecimento:  

  • Linguagens: Língua Portuguesa, Literatura, Língua Estrangeira (Inglês ou Espanhol), Artes, Educação Física e Tecnologias da Informação e Comunicação. 
  • Matemática: Matemática (sim, só essa matéria mesmo). 
  • Ciências da Natureza: Química, Física e Biologia. 
  • Ciências Humanas: História, Geografia, Filosofia e Sociologia. 

Dicas para as questões de exatas

Agora, vamos abordar dicas e exemplos de fórmulas importantes e macetes para decorá-las. Continue lendo para saber mais!

Leia também: Radiação Hawking: conheça a teoria da gravitação gerada por um buraco negro  

Fórmulas matemáticas essenciais

Fórmulas matemáticas essenciais

As fórmulas matemáticas são fundamentais para resolver questões no ENEM. Aqui estão algumas das fórmulas mais importantes que você deve decorar e compreender: 

  • Geometria plana 
    Área do círculo 
    Área do triângulo 
    Teorema de Pitágoras 

  • Álgebra 
    Equação de 1º Grau 
    Equação do 2º Grau 
    Fórmula de Bhaskara 
    Equação da Reta 
    Progressão Aritmética (PA) 
    Progressão Geométrica (PG)

  • Estatística 
    Média Aritmética 
    Média Ponderada 

  • Porcentagem e Matemática Financeira 
    Porcentagem 
    Juros Simples 
    Juros Compostos  

Macetes para decorar as fórmulas

Memorizar fórmulas pode ser desafiador. Aqui estão alguns macetes para ajudar a fixar a matéria: 

  • Música e rimas: transforme fórmulas em músicas ou rimas para facilitar a memorização. Por exemplo: “♪ Área do círculo é pi r ao quadrado, multiplica o raio por ele mesmo dobrado. ♪” 

  • Flashcards: use flashcards para revisar as fórmulas regularmente. 

  • Prática constante: resolva muitas questões de provas anteriores para fixar as fórmulas na memória. 

Principais tópicos de história para o ENEM 2024

Principais tópicos de história para o ENEM 2024

Desde eventos marcantes da história brasileira até influências globais, conheça os temas essenciais para o seu estudo eficaz. 

70 anos da Era Vargas

Em 2024, o fim da Era Vargas completa 70 anos. A Era Vargas foi um dos períodos mais controversos e influentes da história brasileira. Governando em duas ocasiões distintas (1930-1945 e 1951-1954), Getúlio Vargas deixou um legado marcado por profundas transformações políticas, econômicas e sociais.  

Durante seu governo, implementou políticas de industrialização, como a criação da CLT (Consolidação das Leis Trabalhistas) e a fundação da Petrobras, além de promover um nacionalismo econômico que moldou a identidade econômica do país por décadas. 

O fim de sua vida em 1954 encerrou uma era de grandes mudanças e controvérsias, deixando um impacto duradouro na política brasileira.  

A Era Vargas marcou uma transição significativa no Brasil para uma economia mais industrializada e uma sociedade com novas expectativas em relação aos direitos trabalhistas e políticos. 

60 anos da Ditadura Militar

60 anos da Ditadura Militar 

A Ditadura Militar no Brasil, que completará 60 anos em 2024, foi um período sombrio marcado pelo regime autoritário que governou o país de 1964 a 1985. Iniciada com o golpe militar de 1964, a ditadura trouxe consigo repressão política, censura, perseguições e violações dos direitos humanos. 

O AI-5 (Ato Institucional nº 5), de 1968, consolidou o poder dos militares e intensificou a repressão, marcando um período de resistência e luta pela redemocratização do Brasil.  

A transição para a democracia, com a eleição de Tancredo Neves em 1985, encerrou um dos capítulos mais turbulentos da história recente do país. 

A Ditadura Militar não apenas moldou a política brasileira contemporânea como também teve um impacto profundo na cultura, nas artes e na conscientização política da sociedade civil. 

Idade Média

A Idade Média é um período crucial da história europeia, compreendendo aproximadamente do século V ao XV.  

Caracterizada pelo feudalismo (a sociedade estava organizada em feudos e era dominada por senhores feudais), essa era testemunhou eventos como as Cruzadas, que foram expedições militares cristãs para recuperar a Terra Santa do domínio muçulmano, e o Renascimento Carolíngio, um renascimento cultural e intelectual sob o governo de Carlos Magno. 

A Idade Média também viu o surgimento da peste negra, uma pandemia que devastou a Europa no século XIV, mudando irreversivelmente a estrutura social e econômica da época.  

Esse período foi crucial para a formação das instituições feudais que moldaram a Europa Medieval, e suas consequências ainda são perceptíveis na organização social e política de muitos países europeus. 

Brasil Império

Brasil Império

O Brasil Império se refere ao período histórico em que o Brasil era governado por monarcas, iniciando-se com a independência do país de Portugal em 1822, indo até a Proclamação da República em 1889. A independência foi proclamada por Dom Pedro I, que se tornou o primeiro imperador do Brasil. 

Durante o Império, o país passou por diversas fases, como o Primeiro Reinado, marcado por conflitos internos e externos, e o Segundo Reinado, período de maior estabilidade sob o governo de Dom Pedro II.  

A escravidão e as lutas pela abolição, além das questões políticas que culminaram na Proclamação da República, são temas centrais desse período da história brasileira. 

O Brasil Império não apenas consolidou a independência nacional como também enfrentou desafios sociais e políticos que moldaram a identidade nacional brasileira até os dias atuais. 

Segunda Guerra Mundial

A Segunda Guerra Mundial foi o conflito global mais devastador da história, ocorrido entre 1939 e 1945.  

Iniciado com a invasão da Polônia pela Alemanha nazista, o conflito envolveu as principais potências mundiais, incluindo os Aliados (liderados por Estados Unidos, Reino Unido e União Soviética) e o Eixo (liderado por Alemanha, Itália e Japão). 

O conflito teve repercussões profundas em escala global, resultando em milhões de mortes, genocídios como o Holocausto, e a destruição de cidades inteiras.  

A Segunda Guerra Mundial redefiniu o equilíbrio de poder mundial, inaugurando a era da Guerra Fria e moldando as relações internacionais até os dias de hoje. 

Além de suas consequências geopolíticas, a guerra acelerou avanços tecnológicos e científicos que impactaram o mundo moderno. 

Revoluções Industriais

Revoluções Industriais 

As Revoluções Industriais foram períodos de transformação econômica e social profundas, marcados pelo surgimento da produção em larga escala, tecnologias como a máquina a vapor e a mecanização dos processos produtivos.  

A Primeira Revolução Industrial teve início na Inglaterra no final do século XVIII, impulsionando a urbanização e mudando drasticamente as condições de trabalho. 

A Segunda Revolução Industrial, no final do século XIX, trouxe avanços tecnológicos como eletricidade, aço e petróleo, intensificando a industrialização global.  

Esses períodos, além de alterarem a economia e a sociedade, contribuíram para o surgimento do movimento operário e questões sociais como a desigualdade de classe. 

As Revoluções Industriais são fundamentais para entender a transição do trabalho artesanal para o industrial e seu impacto nas relações sociais e econômicas em todo o mundo. 

Iluminismo

O Iluminismo foi um movimento intelectual que dominou o pensamento europeu no século XVIII, destacando-se pela ênfase na razão, na ciência e na crítica à autoridade tradicional.  

Inspirado pelo racionalismo de pensadores como Descartes e pelos avanços científicos da época, o Iluminismo defendia ideais como liberdade individual, igualdade perante a lei e separação entre Igreja e Estado. 

Filósofos como Voltaire, Rousseau e Montesquieu influenciaram profundamente o movimento, que teve impactos significativos na política, na filosofia e nas revoluções que moldaram o mundo moderno.  

O Iluminismo é considerado um marco na história intelectual europeia, promovendo ideias que foram fundamentais para o surgimento dos ideais democráticos e dos direitos humanos modernos. 

Acompanhe o Museu WEG e fique atualizado! 

Esperamos que essas dicas ajudem você a manter a calma e arrasar no ENEM 2024. Você também pode conferir o Blog do Museu WEG para encontrar alguns desses temas e muitos outros assuntos sobre o mundo da ciência. Boa sorte nos estudos!   

DICA BÔNUS: lembre-se de que os portões abrem às 12 horas e fecham às 13 horas. Não se atrase!  

Como se preparar para o ENEM 2023: dicas, conteúdos e redação

Saiba como se preparar corretamente para o ENEM 2023 e conquiste uma pontuação alta na prova.

04 de outubro de 2023
...

ENEM 2023 está se aproximando. Para ajudá-lo a se preparar adequadamente para suas provas, aqui você encontrará tudo o que precisa saber sobre o Exame Nacional do Ensino Médio. 

Mas, antes de entrarmos em dicas práticas, vamos entender um pouco sobre a relevância do ENEM para os brasileiros. 

Criado em 1998 pelo Ministério da Educação (MEC), o ENEM, primeiramente, tinha como objetivo apenas diagnosticar o nível educacional aplicado no Brasil, seria uma forma de analisar e sugerir pontos para melhorá-lo. 

Porém, lá em 2009, passou a ser a porta de entrada para o ensino superior, possibilitando que os participantes tivessem acesso ao SISU (Sistema de Seleção Unificada) e ao ProUni (Programa Universidade para Todos) e também pudessem se candidatar às instituições de Portugal. 

Bem, agora que você já está por dentro da importância do ENEM, vamos entender um pouco sobre a estrutura técnica desse exame.

Estrutura do ENEM 2023

Prova Enem 2023

Na sua edição de 2023, o ENEM acontecerá nos dias 5 e 12 de novembro. Atualmente, a prova do ENEM é dividida em dois domingos seguidos, o primeiro deles tem duração de 5h30 e é dedicado às provas de Ciências Humanas, Linguagens e Redação; já o segundo é dedicado às provas de Matemática e Ciências da Natureza e conta com 5 horas de prova. 

No total, as duas provas contam com 180 questões, nas quais cada área de conhecimento conta com 45 questões. Para ficar mais fácil de se organizar, fique ligado nas matérias que serão cobradas em cada uma das áreas de conhecimento: 

  • Linguagens: Língua Portuguesa, Literatura, Língua Estrangeira (Inglês ou Espanhol), Artes, Educação Física e Tecnologias da Informação e Comunicação.
  • Matemática: Matemática (sim, só essa matéria mesmo).
  • Ciências da Natureza: Química, Física e Biologia.
  • Ciências Humanas: História, Geografia, Filosofia e Sociologia.

Referente à redação cobrada, que segue o modelo dissertativo e argumentativo, o tema só será descoberto no momento da prova – mas calma, pois a seguir vêm as dicas para você arrasar na sua.

O que levar no dia da prova?

Prova Enem 2023

O ENEM é cheio de normas que precisam ser seguidas à risca para que você não perca a chance de fazer a sua prova, como é o caso dos itens que precisam ser levados. Para ficar mais fácil, fizemos uma listinha:

  • Caneta esferográfica PRETA com tubo TRANSPARENTE (não pode mais levar caneta azul).
  • Documento de identificação oficial com foto.
  • Lanche e garrafa de água TRANSPARENTE e SEM RÓTULO, se quiser levar.

É muito comum que os participantes do ENEM levem um lanchinho para comerem durante a prova, que é longa. 

Aqui vai uma dica: se você for levar um lanche, fuja de chocolates e doces ultraprocessados. Optar por sanduíches, frutas, suco ou biscoitos integrais é a melhor opção (sério, dica de quem passou por isso). 

Por fim, tente levar duas canetas esferográficas pretas, assim, se uma falhar, você tem a outra para concluir a prova. Se você for levar só uma, pelo menos teste ela antes de ir para a prova. 

Quais são os conteúdos mais cobrados?

Prova Enem 2023

Para ajudar você a fazer um “intensivão” antes do ENEM 2023, separamos os 5 conteúdos mais cobrados em cada uma das matérias. Confira:

Prova de Linguagens

→ Interpretação textual. 

→ Gramática. 

→ Estruturas textuais.

→ Movimentos literários.

→ Conjugação verbal. 

Prova de Matemática

→ Equações de funções de 1º e 2º grau. 

→ Porcentagem. 

→ Matemática financeira.

→ Razões e proporções.

→ Noções de estatística.

BÔNUS: é sempre bom estudar a Regra de Três (muitas equações podem ser solucionadas com ela).

Prova de Ciências da Natureza

→ Biologia: Biologia Celular, Ecologia, Ecossistema, DNA e RNA, Células Tronco e Clonagem. 

→ Física: Movimento Uniforme e Movimento Uniformemente Variado, Cinemática, Aceleração, Leis de Newton e Energia e Trabalho.→ Química: Ligações Químicas, Forças Intermoleculares, Química Inorgânica, Funções Orgânicas e Reações Orgânicas e Estequiometria. 

Prova de Ciências Humanas:


→ História: Civilização Romana, Civilização Grega, Feudalismo, Absolutismo e Reforma Protestante e Revolução Francesa. 

→ Geografia: Cartografia e Leitura de Mapas, Climas do Brasil e Climas do Mundo, Acordo de Paris e Conferências Ambientais, Aquecimento Global e Efeito Estufa e Bacias Hidrográficas. 

→ Filosofia: Filosofia Clássica e Pré-socráticos, Sócrates e seu legado, Platão e Aristóteles, Filósofos Medievais e Renascimento. 

→ Sociologia: Auguste Comte e o Positivimo, Bauman, Foucault, Cultura Material e Imaterial, Patrimônio Histórico Cultural. 

Agora que você já sabe o que é quase certeza de que vai ser cobrado, veja as dicas para arrasar na redação.

Dicas para a Redação

Alunos na prova Enem 2023

Como prometido, chegou o tão desejado tópico sobre Redação do ENEM.  

Antes de se aprofundar nas dicas, vale lembrar de que a redação nada mais é do que uma “argumentação escrita”, é uma forma de mostrar aos avaliadores que você está por dentro do que está acontecendo no mundo. Daí vem a primeira dica: 

1ª dica: fique atento às tendências e aos assuntos que impactaram o ano de 2023  

É impossível argumentar com fundamento sem conhecer o tema, então bora maratonar sites de notícia e assistir reportagens que foram importantes neste ano.  

2ª dica: estude os temas que caíram nos últimos anos 

Não irá cair o mesmo tema, mas, com certeza, estudar esses temas irá abrir a sua mente para assuntos sociais e que podem cair na prova.  

3ª dica: faça pelo menos 3 redações por semana e as corrija 

Além de estimular o seu senso crítico e argumentativo, corrigir as suas próprias redações irá trazer um olhar mais técnico para você.  

Nossa sugestão é que você escreva a redação em um dia e corrija no outro para o assunto não ser lido no automático.  

4ª dica: divida o seu texto em um esqueleto estratégico 

Nada de deixar tudo para o improviso. Leia o tema da redação, pense em uma estrutura convincente e monte o esqueleto textual sempre se lembrando de seguir: introdução, desenvolvimento e conclusão.  

Na introdução, você irá apresentar a sua tese contextualizando o tema; no desenvolvimento, você irá trazer os seus argumentos apresentando fatos e dados sobre o assunto (escreva pelo menos dois parágrafos); na conclusão, você deverá sugerir uma solução para esse problema.  

5ª dica: mantenha o seu argumento com confiança 

Defenda os seus argumentos com unhas e dentes. Se você duvidar do que está escrevendo e abrir o tópico em mil e um argumentos diferentes, nem você, nem o avaliador irão compreender o seu texto.  

DICA: lembre-se de manter a ciclicidade do seu argumento durante todo o texto. O título deve conversar com todos os parágrafos do texto, inclusive com a etapa de conclusão.  

Esperamos que essas dicas ajudem você a manter a calma e arrasar no ENEM 2023. Você também pode conferir o Blog do Museu WEG para encontrar alguns desses temas e muitos outros assuntos sobre o mundo da ciência.  

DICA BÔNUS: lembre-se de que os portões se abrem às 12 horas e se fecham às 13 horas. Não se atrase!  

Fontes: 

FAESA – Como estudar para o Enem 2023: dicas, conteúdos e redação 
CNN Brasil – Como estudar para o Enem 2023: Veja 10 dicas práticas 
Brasil Escola – O que estudar para o Enem 2023 

Bóson de Higgs

Bóson de Higgs: O que é essa descoberta de Peter Higgs?

Descubra o que é o Bóson de Higgs e como essa descoberta de Peter Higgs mudou a nossa compreensão do universo.

14 de outubro de 2024
...

Você já ouviu falar do Bóson de Higgs e ficou curioso sobre o que ele realmente é? Essa partícula representa uma das descobertas mais marcantes da física moderna e desempenha um papel fundamental na forma como entendemos o cosmos. 

Imagine um universo sem átomos, estrelas ou até mesmo pessoas — tudo isso seria impossível sem essa partícula essencial! 

Para compreender por que o Bóson de Higgs é tão relevante, vamos explorar a história por trás dessa descoberta notável e conhecer a jornada do físico britânico Peter Higgs, o cientista que propôs essa ideia transformadora. Pronto para aprender mais sobre o Bóson de Higgs? Vamos lá! 

Quem foi Peter Higgs? 

Peter Higgs, físico britânico nascido em 1929, é o responsável por uma das contribuições mais significativas da física moderna. Em 1964, Higgs teve uma ideia revolucionária para explicar como as partículas adquirem massa, dando origem à teoria do Bóson de Higgs. 

Embora muitos, inicialmente, achassem sua teoria complexa e difícil de acreditar, ele persistiu em seu trabalho e, em 2013, foi agraciado com o Prêmio Nobel de Física por suas contribuições extraordinárias. 

Higgs iniciou sua carreira como professor e pesquisador e, apesar das adversidades, nunca desistiu de provar que sua teoria estava correta. Além de sua contribuição sobre o Bóson de Higgs, ele também desenvolveu uma teoria sobre a expansão do universo logo após o Big Bang, que é essencial para entendermos a formação e evolução do cosmos. 

Bóson de Higgs

Como funciona o Bóson de Higgs?

Para entender o papel do Bóson de Higgs, imagine uma pista de patinação no gelo. Quando você patina, sente uma certa resistência que desacelera seu movimento. Da mesma forma, no universo, as partículas enfrentam uma “resistência” em um campo invisível chamado campo de Higgs. É essa resistência que confere massa às partículas. 

Sem o Bóson de Higgs, as partículas seriam desprovidas de massa, impossibilitando a formação de átomos. Sem átomos, não haveria estrelas, planetas ou qualquer forma de vida como conhecemos. 

O campo de Higgs funciona como uma “massa invisível” que permeia todo o espaço. À medida que as partículas se movem através desse campo, elas adquirem massa. Sem essa interação, as partículas seriam leves demais para formar a matéria. 

Como foi encontrado?

Encontrar o Bóson de Higgs foi um desafio gigante. No CERN, um laboratório na Suíça, os cientistas utilizaram o Grande Colisor de Hádrons (LHC) para colidir prótons a altíssimas energias. 

Em 2012, eles anunciaram a descoberta de uma partícula que correspondia ao Bóson de Higgs, confirmando a teoria proposta por Peter Higgs. 

Essa descoberta foi um marco na física, pois validou uma parte crucial do Modelo Padrão, que explica como as partículas e forças do universo interagem. A confirmação do Bóson de Higgs foi uma conquista monumental que ampliou nosso entendimento sobre o universo. 

Bóson de Higgs

O Grande Colisor de Hádrons (LHC)

O LHC é um dos maiores e mais poderosos aceleradores de partículas do mundo. Ele faz com que as partículas colidam a velocidades próximas à velocidade da luz.  

Quando essas partículas colidem, elas podem criar novas partículas, como o bóson de Higgs. A descoberta foi uma grande realização porque ajudou a confirmar a teoria de Higgs e completou o Modelo Padrão. 

Curiosidades sobre o Bóson de Higgs

  • O Bóson de Higgs foi nomeado em homenagem a Peter Higgs, mas o “bóson” é um termo geral usado para partículas que obedecem a certas regras matemáticas chamadas de “estatísticas de Bose-Einstein”. 
  • Sem o campo de Higgs, as partículas não teriam massa. Isso significa que átomos e moléculas não existiriam, e o universo como conhecemos não seria possível. 
  • A descoberta do Bóson de Higgs ajudou os cientistas a confirmar que o modelo padrão da física de partículas está correto. Esse modelo é como um manual que explica as partículas e as forças que compõem o universo. 
  • Peter Higgs e François Englert, outro físico que ajudou na teoria, ganharam o Prêmio Nobel de Física em 2013 por suas contribuições. 

Apesar dessa descoberta ser uma grande conquista, a física ainda tem muitos mistérios a resolver. O trabalho de Peter Higgs ajudou a abrir novas possibilidades para entender mais sobre o universo. Novas pesquisas podem levar a descobertas ainda mais importantes!  

Visite o museu e siga nossas redes sociais!

Bom, esperamos que a história do Bóson de Higgs tenha sido tão fascinante para você quanto foi para nós. Para continuar aprendendo sobre física e conhecer mais sobre cientistas importantes, venha visitar nosso museu e nos siga nas redes sociais

Temos exposições especiais que vão te ajudar a entender melhor algumas descobertas e ver de perto como elas funcionam. Venha conferir e se apaixonar ainda mais pela ciência! 

Fontes: 

https://www.bbc.com/portuguese/articles/cx7dngz5l4jo

https://www.nationalgeographicbrasil.com/ciencia/2024/04/quem-foi-peter-higgs-o-cientista-que-descobriu-a-particula-de-deus

https://revistagalileu.globo.com/ciencia/noticia/2024/04/boson-de-higgs-o-que-e-a-particula-de-deus-descoberta-por-peter-higgs.ghtml

quem foi Mona Lisa

Quem foi Mona Lisa? Descubra a história por trás da pintura de Leonardo Da Vinci

Conheça quem foi Mona Lisa e as teorias sobre a verdadeira identidade por trás da obra-prima de Leonardo da Vinci.

A Mona Lisa é, sem dúvidas, uma das pinturas mais famosas do mundo. Mas quem foi essa mulher que Leonardo da Vinci imortalizou em sua obra-prima no início do século XVI?  

A identidade da Mona Lisa tem sido objeto de especulação por mais de 500 anos, e até hoje historiadores e estudiosos ainda estão em busca de respostas definitivas.  

Hoje, vamos analisar a história por trás da identidade dessa enigmática mulher, desde sua origem até o impacto cultural que ela tem até os dias atuais. 

A criação da obra: Como Mona Lisa surgiu? 

Leonardo da Vinci, um dos maiores gênios do Renascimento, começou a trabalhar na Mona Lisa por volta de 1503, enquanto morava em Florença.  

A pintura demorou cerca de quatro anos para ficar pronta, o que mostra o quanto Da Vinci valorizava essa obra. 

A Mona Lisa foi encomendada por Francesco del Giocondo, um comerciante de seda de Florença. Combinando suas habilidades artísticas e científicas, Da Vinci criou uma pintura que reflete os ideais do humanismo renascentista, que valorizava a dignidade e o potencial do ser humano. 

A Mona Lisa, com sua expressão natural e misteriosa, é um ótimo exemplo dessa abordagem. 

quem foi Mona Lisa

A verdadeira identidade: Quem foi Lisa Gherardini?

A teoria mais aceita é que a mulher retratada na pintura é Lisa Gherardini, esposa de Francesco del Giocondo, o que também explica o título alternativo da obra, “La Gioconda”.  

Lisa nasceu em 1479 em Florença, filha de Antonmaria Gherardini e Lucrezia del Caccia, membros de uma família florentina de classe média alta.  

Ela se casou com Francesco del Giocondo em 1495, quando tinha apenas 16 anos, e viveu uma vida relativamente tranquila e respeitável como esposa e mãe. 

Apesar de a teoria de Lisa Gherardini ser amplamente aceita, ela nunca foi confirmada com absoluta certeza.  

Documentos históricos, como o diário de um funcionário de Da Vinci, Agostino Vespucci, fazem referência a uma obra do mestre que seria um retrato de Lisa del Giocondo, mas essas evidências não são definitivas.  

A ausência de registros mais concretos sobre sua vida e o fato de que ela não era uma figura pública fazem com que a identidade da Mona Lisa continue envolta em mistério. 

Outras teorias sobre sua identidade

A falta de uma confirmação definitiva sobre a identidade da Mona Lisa levou ao surgimento de várias outras teorias ao longo dos séculos. Uma das mais curiosas é a hipótese de que a Mona Lisa seria um autorretrato disfarçado de Leonardo da Vinci.  

Essa teoria baseia-se em análises de proporções faciais, que mostram semelhanças surpreendentes entre o rosto da Mona Lisa e autorretratos conhecidos de Da Vinci.  

Além disso, alguns estudiosos sugerem que a obra poderia refletir a visão do artista sobre a dualidade do ser humano, combinando características masculinas e femininas em uma única figura. 

Há também a possibilidade de que a Mona Lisa não represente uma pessoa real, mas sim um ideal de beleza feminina criado por Da Vinci.  

Essa teoria sugere que o artista teria utilizado várias modelos diferentes ou até mesmo sua imaginação para compor a figura, resultando em uma representação idealizada da mulher renascentista. 

quem foi Mona Lisa

O que torna o sorriso de Mona Lisa tão enigmático?

O sorriso da Mona Lisa é, sem dúvida, um dos aspectos mais comentados da pintura. Leonardo da Vinci utilizou a técnica do sfumato para criar uma transição suave entre luz e sombra, sem linhas duras, o que dá ao sorriso uma qualidade ambígua e mutável.  

Dependendo do ângulo de visão e da iluminação, o sorriso da Mona Lisa pode parecer alegre, melancólico ou até mesmo desdenhoso. 

A ambiguidade do sorriso tem sido objeto de inúmeras interpretações e estudos ao longo dos séculos. Alguns psicólogos sugerem que o sorriso reflete uma emoção complexa, capturando um momento de introspecção ou mistério. 

Outros estudiosos acreditam que Da Vinci, com seu profundo interesse em anatomia e psicologia, estava estudando a capacidade do rosto humano de expressar múltiplas emoções simultaneamente. 

O sorriso da Mona Lisa também é frequentemente citado como um exemplo de pareidolia, um fenômeno psicológico onde as pessoas percebem padrões familiares, como rostos, em estímulos vagos ou ambíguos.  

Isso pode explicar por que diferentes pessoas interpretam o sorriso de maneira tão variada, dependendo de suas próprias emoções e perspectivas. 

Além disso, a técnica de sfumato utilizada por Da Vinci foi inovadora para a época. Ela permitiu a criação de um efeito de profundidade e tridimensionalidade que era inédito. Imagina só! 

Essa técnica contribui muito para a ilusão de que o sorriso da Mona Lisa se altera à medida que o espectador se move diante da pintura, aumentando ainda mais o mistério e a curiosidade pela obra. 

Curiosidades sobre a obra-prima

Aqui vai uma curiosidade sobre a Mona Lisa: ao contrário do que muitos pensam, a pintura é bem pequena, medindo apenas 77 cm por 53 cm. Isso contrasta com a enorme fama da obra, e muitos visitantes do Louvre ficam surpresos ao ver o tamanho real dela. 

Outra coisa interessante é que a Mona Lisa não tem sobrancelhas nem cílios. Na época do Renascimento, era comum que as mulheres italianas os removessem, mas alguns especialistas acham que Da Vinci realmente pintou esses pelos.  

Com o tempo, eles podem apenas ter desaparecido devido a limpezas e restaurações. 

quem foi Mona Lisa

Mona Lisa como um símbolo da arte renascentista e da cultura ocidental

Sua fama aumentou ainda mais após ter sido roubada do Louvre em 1911, sendo recuperada dois anos depois. Esse incidente atraiu atenção global, reforçando ainda mais sua posição como uma das obras de arte mais reconhecidas do mundo. 

Hoje, ela é amplamente reproduzida e reinterpretada na cultura popular. Ela já apareceu em vários filmes, paródias e até campanhas publicitárias. Sua imagem é sinônimo de mistério e beleza, capturando a imaginação de pessoas ao redor do mundo. 

E, mesmo após mais de 500 anos, ela continua a ser objeto de estudo. Aliás, pesquisas recentes utilizando tecnologia avançada, como a análise de espectros e exames de raio-X, revelaram novos detalhes sobre a pintura, mas muitos dos mistérios ainda permanecem sem solução.  

Isso só aumenta o interesse e a curiosidade sobre a verdadeira história, não é? 

Visite o museu e siga nossas redes sociais!

Bom, pessoal! Esperamos que vocês tenham gostado de aprender mais sobre a Mona Lisa e que isso tenha despertado seu interesse pela arte renascentista. 

Se curtiu esta breve passagem pela história, dê uma olhada em outros posts do nosso blog. Lá, você encontra mais curiosidades sobre obras de arte, histórias interessantes do Brasil e do mundo, e muito mais sobre o universo da arte! Até a próxima! 

Fontes: 

https://revistagalileu.globo.com/cultura/noticia/2024/05/quem-realmente-foi-mona-lisa-teoria-afirma-que-ela-pode-ter-sido-uma-rainha.ghtml

https://super.abril.com.br/especiais/os-segredos-da-mona-lisa

https://www.todamateria.com.br/mona-lisa

fatos científicos sobre a maternidade

4 fatos científicos sobre a maternidade

Conheça 4 fatos científicos sobre a maternidade, revelando a complexidade e a beleza por trás do vínculo entre mãe e filho.

12 de maio de 2024
...

Hoje é dia de celebrar as heroínas em nossas vidas. Para comemorar isso, decidimos fazer uma matéria apresentando fatos científicos sobre a maternidade. E a ciência comprova isso, viu?

Vamos mergulhar em alguns dos aspectos menos falados, mas igualmente importantes, da maternidade que revelam a complexidade e a beleza por trás do vínculo entre mãe e filho. Bora conferir!

PS: a última vai surpreender.

Leia também: Curiosidade infantil: qual é a importância de estimulá-la no aprendizado?

4 Fatos científicos sobre a maternidade

O amor de mãe é tão relevante para o desenvolvimento dos bebês que até já virou tópico de estudo em diversas universidades e centros de pesquisa.

Quer conhecer alguns deles? Então é só continuar lendo!

1-  A maternidade afasta o Alzheimer

Você não leu errado, não! Durante a gestação, a mãe e o seu bebê (do sexo masculino) estão “ligados” e compartilham nutrientes e também algumas células através da migração delas para a placenta.

Essas células partilhadas acabam se multiplicando por anos no corpo da mãe e são alocadas na pele e nos órgãos vitais (como pulmões, fígado e rins).

Segundo uma pesquisa publicada pela PLOS, foi identificado que essas células podem alcançar o cérebro da mãe, o que, em grandes quantidades, apresentam uma redução no risco de ter Alzheimer. Não existe uma explicação exata do porquê de isso acontecer, mas existe uma teoria que defende que essas células se transformam em novos neurônios para a mãe, o que auxilia na prevenção contra o Alzheimer.

2- O toque traz a cura

A gente falou que elas eram super-heroínas! Você provavelmente já ouviu falar que o leite materno tem todos os nutrientes que um bebê precisa para o seu sistema imunológico, mas saiba que o toque é tão importante quanto.

Pesquisadores da Escola de Enfermagem de Dalhousie vêm estudando como o toque da mãe pode reduzir a dor em até 30% em bebês prematuros ou doentes.

Outro estudo feito pela Universidade McGill foi conhecido como “método canguru”. Ele comprova que o ato de segurar o bebê no peito acelera o ganho de peso saudável, aumenta a resistência a infecções e hipotermia e ainda ameniza a dor.

Leia também: Conheça 5 mulheres que mudaram o mundo com suas invenções

fatos científicos sobre a maternidade

3- O bebê escuta a sua mãe de dentro da barriga

Outro poder digno de super-heroínas! Tendo como objetivo estudar o aprendizado da língua materna de bebês, pesquisadores da Universidade de Washington descobriram que os recém-nascidos mostram estranheza ao ouvir línguas diferentes da falada pela sua própria mãe.

“Este é o primeiro estudo que mostra que os fetos aprendem no pré-natal sobre os sons específicos da fala de uma língua materna”, confirma Christine Moon, autora principal e professora de psicologia da Luterana do Pacífico em Tacoma, Wash.

Isso não só mostra que o neném escuta a sua mãe desde a época da barriga como também já está acostumado com a sua voz.

Leia também: Mulheres que fazem ciência

fatos científicos sobre a maternidade

4- A mãe entende o seu filho

Você provavelmente já presenciou uma cena em que um bebê balbucia algo e a mãe entende na hora que ele quer água, mamar etc.

Segundo uma pesquisa realizada pela jornalista científica da BBC Melissa Hogenboom, foi apresentado que isso acontece porque, durante a maternidade, há alterações cerebrais significativas na mãe impactando principalmente no “circuito de recompensas” (envolvendo o córtex pré-frontal) e outros setores que aumentam a motivação e a alegria ao ter interações com o seu bebê.

Graças a essas alterações, uma mãe consegue desbloquear uma empatia tão alta a ponto de a sua reação ao choro do bebê facilitar o entendimento das necessidades dos recém-nascidos.

fatos científicos sobre a maternidade

Leia também: Hipátia de Alexandria: a mãe das cientistas

Curtiu esta matéria? Acesse o nosso blog (clicando aqui) e confira mais conteúdos fascinantes como este.

Já está nos seguindo no Instagram e no Twitter? Para seguir, é só clicar ←.

Fontes:

https://www.uol.com.br/vivabem/listas/5-estudos-cientificos-provam-como-a-maternidade-e-mesmo-fantastica.htm

https://plenae.com/para-inspirar/6-curiosidades-sobre-a-maternidade-segundo-a-ciencia/#:~:text=Segundo%20estudos%20da%20Universidade%20de,desenvolverem%20depressão%20aos%2040%20anos.https://www.bbc.com/portuguese/geral-59491976

Hidrostática: entenda os princípios de Pascal e Arquimedes e o teorema de Stevin

Conheça os conceitos de hidrostática e mergulhe nos princípios de Pascal e Arquimedes e o teorema de Stevin.

10 de agosto de 2023
...

hidrostática, ramo da física dedicado ao estudo dos fluidos em equilíbrio, oferece um olhar fascinante sobre os fenômenos que ocorrem no mundo líquido ao nosso redor. 

Compreender os princípios fundamentais por trás desses fenômenos nos permite desvendar desde a pressão exercida por fluidos confinados até a flutuabilidade dos objetos imersos.

Neste post blog, vamos explorar os conceitos fundamentais da hidrostática, além de compreender os princípios de Pascal e Arquimedes e o teorema de Stevin. Prepare-se para mergulhar nesse universo de conhecimento.

O que é hidrostática?

A hidrostática é um ramo da física que estuda os fluidos em repouso, ou seja, quando não há movimento. 

É graças a ela que é possível compreender o comportamento de líquidos e gases sob diferentes condições.

Para entender a hidrostática, é preciso compreender os seguintes conceitos: pressão, transmissão de pressão em fluidos, empuxo e variação.

Conceitos principais da hidrostática

Mergulhando mais afundo no conceito de hidrostática, nos deparamos com alguns termos de grande relevância para o estudo desta temática e, para ficar mais fácil o seu entendimento, explicaremos a seguir, de forma simples, o que significa cada um.

1. Pressão

A pressão é a força exercida por um fluido sobre uma determinada área. De forma resumida, a pressão é como uma força “espalhada”, onde a área aplicada é totalmente influente na quantidade de força sentida. 

Imagine que você esteja empurrando uma das paredes de uma piscina de criança, como a área é pequena, a pressão será ainda maior. Porém, se você empurrar a parede de uma piscina olímpica, a pressão se tornará muito menor. 

Na prática, a pressão é a força que um fluido (como a água ou o ar) exerce sobre uma área específica. Para calcular a pressão, você divide a força aplicada pela área em que ela atua. Quanto maior a força exercida ou menor a área, maior será a pressão.

Esse conceito é essencial para áreas como a engenharia hidráulica, possibilitando a projeção de sistemas mais eficientes e seguros que possibilitem transmitir força e controlar movimentos.

2. Transmissão de pressão em fluidos

Imagine que você tem um balão cheio de água e você pressiona uma parte dele com o dedo. 

Você perceberá que a pressão que exerceu não fica apenas no ponto em que você tocou, mas se espalha por todo o balão. Isso ocorre porque a pressão em um fluido é transmitida igualmente em todas as direções.

Um exemplo prático da utilização deste conceito está na construção de barragens. Quando a água enche o reservatório, ela exerce uma pressão hidrostática sobre as paredes da barragem. 

Graças à transmissão de pressão, essa pressão hidrostática é distribuída de maneira uniforme por toda a estrutura da barragem. 

Isso reforça que este princípio é fundamental na engenharia civil, especialmente na construção de barragens, garantindo a segurança e estabilidade dessas estruturas.

3. Empuxo

Sabe quando você pula na piscina e é “puxado” para cima? Isso é o empuxo. 

O empuxo depende de duas coisas: a densidade do fluido e o volume de fluido que o objeto desloca. Quanto maior a densidade do fluido, maior será o empuxo. Isso significa que quanto mais do objeto estiver imerso no fluido, maior será o empuxo.

Um exemplo prático do empuxo é o comportamento dos objetos flutuantes em um líquido, como um barco navegando sobre a água. 

O barco é projetado para ter um formato que empurra uma grande quantidade de água para baixo enquanto flutua. O empuxo que a água exerce sobre o barco ajuda a mantê-lo flutuando, mesmo sendo um objeto pesado.

4. Variação

A variação de pressão ocorre quando há diferença de pressão entre dois pontos em um mesmo fluido que está parado. Essa diferença de pressão é diretamente proporcional à diferença de altura vertical entre esses pontos e à densidade do fluido. 

Imagine um cano com água dentro. Se tivermos um ponto mais alto no cano e outro mais baixo, haverá uma diferença de altura entre eles. 

Essa diferença de altura influencia diretamente na diferença de pressão entre os dois pontos. Quanto maior a densidade do fluido, maior será a variação de pressão entre os pontos.

Na prática, a variação de pressão é aplicada em sistemas hidráulicos, que são sistemas que utilizam líquidos para transmitir força e energia. 

Agora que você já está por dentro dos principais conceitos de hidrostática, vamos entender os famosos princípios e o teorema deste tema.

Princípio de Pascal

O Princípio de Pascal nos diz que quando aplicamos pressão em um fluido que não pode ser comprimido, essa pressão é transmitida igualmente para todas as direções.

Isso significa que qualquer mudança de pressão aplicada em um ponto de um fluido confinado se propaga igualmente em todas as direções, sem perdas significativas. 

Esse princípio é fundamental para entender o funcionamento de sistemas hidráulicos, como freios de carros, macacos hidráulicos e prensas, que se baseiam na transmissão da pressão para gerar força e movimento.

A pressão se propaga uniformemente em todas as direções, o que se resume na seguinte fórmula: 

P₁ / A₁ = P₂ / A₂

NOMENCLATURA

P₁ = Pressão aplicada na primeira área

A₁ = Área correspondente à primeira pressão aplicada 

P₂ = Pressão resultante na segunda área

A₂ = Área correspondente à segunda pressão resultante

O Princípio de Pascal desempenha um papel crucial em nossa compreensão da pressão e sua aplicação prática na criação de máquinas e dispositivos úteis em várias áreas industriais.

Princípio de Arquimedes

O princípio de Arquimedes, estabelece que um objeto imerso em um fluido recebe um empuxo verticalmente para cima, igual ao peso do fluido deslocado pelo objeto. Em outras palavras, o princípio explica por que um objeto flutua ou afunda em um fluido. 

Se o peso do objeto for menor do que o empuxo exercido pelo fluido, o objeto flutua. Caso contrário, o objeto afunda. Ele é fundamental para entender a flutuação de barcos, o funcionamento de submarinos e até mesmo o equilíbrio do corpo humano imerso na água.

Sabe aquela sensação de flutuar que você sente ao entrar em uma piscina? Este é o empuxo agindo em você. A fórmula que representa essa força é:

E = ρ * V * g

NOMENCLATURA

E = Empuxo 

ρ = Densidade do fluido 

V = Volume de fluido deslocado pelo objeto 

g = Aceleração da gravidade 

Este princípio é aplicado em diversas áreas, como na construção de navios e submarinos, pois nos ajuda a entender como essas estruturas flutuam e se movimentam na água.

Teorema de Stevin

O teorema de Stevin, descreve a relação entre a pressão hidrostática e a altura de um fluido em repouso. Segundo ele, a pressão exercida por um fluido em um ponto depende apenas da altura do fluido acima desse ponto, e não do formato do recipiente ou da área de superfície. 

Em outras palavras, a pressão aumenta proporcionalmente à profundidade do fluido. Isso significa que quanto maior a altura do fluido, maior será a pressão exercida. 

O teorema de Stevin é importante para entender fenômenos como a pressão atmosférica, o funcionamento de barragens e o equilíbrio de líquidos em recipientes conectados em diferentes alturas. Essa relação pode ser expressa pela fórmula:

ΔP = ρ * g * Δh

NOMENCLATURA

ΔP = Variação da pressão

ρ = Pressão absoluta 

g = Gravidade 

Δh = Variação de altura

Um grande exemplo do Princípio de Stevin aplicado é o sistema hidráulico das casas. 

Para continuar aprofundando seus conhecimentos, não deixe de procurar pela palavra-chave “ENEM” em nosso blog, onde você encontrará mais conteúdos relevantes sobre física e outros assuntos cobrados nos vestibulares.

Continue explorando o blog do Museu WEG e desvende os segredos da ciência e da tecnologia. Ainda não está seguindo o Museu WEG no Instagram? Siga agora.

Fontes:

Hidrostática – Brasil Escola
Hidrostática – Toda matéria
Hidrostática – Conceitos, Stevin e Pascal

Conheça as Leis de Kirchhoff e aprenda como aplicá-las

Conheça os conceitos dos circuitos elétricos nas leis de Kirchhoff e explore a Lei dos Nós e a Lei das Malhas com exemplos práticos.

Quem está com a curiosidade a mil para descobrir os segredos elétricos por trás dos circuitos levante a mão o/. 

Se está procurando entender de modo simples e descomplicado as Leis de Kirchhoff para fazer sucesso no ENEM (ou só para adquirir mais conhecimento), este conteúdo é para você.

Antes de entrarmos no tema central, primeiro, você precisa entender um pouco sobre Circuitos Elétricos. Confira.

O que são Circuitos Elétricos?

Quando você pensar em circuitos elétricos, lembre-se de que são componentes eletrônicos (como capacitores e fontes de energia) nos quais todos estão conectados e prontos para gerar uma corrente elétrica. 

Existem dois tipos de circuitos principais: os em série e os em paralelo. 

Nos circuitos em série, os componentes são tipo um trenzinho, ficam um depois do outro, e a corrente elétrica passa por todos em sequência.

Já os circuitos em paralelo são diferentes. Neles, os componentes são tipo aqueles amigos inseparáveis, sempre lado a lado e que dividem tudo (neste caso, a corrente elétrica). 

Agora que você já sabe o que é um circuito elétrico, vamos conhecer um pouquinho Gustav Kirchhoff.

Quem foi Kirchhoff?

Gustav Kirchhoff foi um renomado físico e cientista alemão que nasceu no século XIX, na cidade de Königsberg, que teve uma contribuição significativa para o campo da física, especialmente no estudo da eletricidade e do magnetismo. 

Kirchhoff é conhecido por formular as Leis de Kirchhoff, que são fundamentais no entendimento e na análise de circuitos elétricos. Mas não é só por isso que ele é tão importante para o mundo da física e da ciência. 

Ao longo da sua carreira, fez importantes descobertas na área da física, sendo responsável por estabelecer conceitos fundamentais sobre a corrente elétrica e a lei da conservação da carga. 

Além disso, em parceria com Robert Bunsen, ele desenvolveu o espectroscópio, um instrumento que ajudou a identificar elementos químicos por meio de suas linhas espectrais.

Quais são as Leis de Kirchhoff?

As Leis de Kirchhoff são dois princípios básicos que regem o comportamento das correntes elétricas em um circuito. Em outras palavras, elas são como os detetives do mundo elétrico investigam as correntes e as tensões em um circuito. 

Sabe aquele momento em que você se pergunta como a eletricidade se comporta e como você pode realmente entender isso? É aí que as Leis de Kirchhoff entram em cena.

A primeira lei, também conhecida como Lei dos Nós, estabelece que a soma das correntes que entram em um nó de um circuito é igual à soma das correntes que saem dele.

Ou seja, a carga elétrica é conservada em um ponto de conexão entre os elementos do circuito como se fossem um “vai e vem” das correntes. 

Já a segunda lei, a Lei das Malhas, até poderia ser chamada de a “lei do equilíbrio” já que ela diz que a soma das diferenças de potencial elétrico em um percurso fechado de um circuito sempre será igual a zero.

Isso significa que toda a energia que a fonte de alimentação fornece é exatamente a mesma energia que os componentes do circuito consomem. É como se fosse uma balança perfeita na qual a energia entra de um lado e sai pelo outro sem sobrar nem faltar nada. 

Exemplos práticos das Leis de Kirchhoff

Chegou a hora de você ver um exemplo de cada uma das Leis de Kirchhoff para tudo ficar mais claro.

Exemplo da Lei dos Nós

Imagine um circuito simples com três resistores ligados em série em que existem as correntes I1, I2 e I3 passando pelos resistores. 

Segundo a Lei dos Nós, a soma das correntes que chegam ao ponto de conexão dos resistores tem que ser igual à soma das correntes que saem dali.

Então, na linguagem da elétrica, a equação fica assim:

I1 = I2 + I3

Exemplo da Lei das Malhas

Imagine um circuito em formato de triângulo, com três resistores (R1, R2 e R3) em cada uma das pontas. 

Cada resistor desses tem sua própria corrente elétrica (I1, I2 e I3). Como a Lei das Malhas nos diz que a soma das diferenças de potencial elétrico em cada caminho fechado do circuito precisa ser igual a zero, elas precisam se equivaler.

Nesse caso, seguindo o sentido horário, a primeira malha terá a seguinte equação:

(R1 x I1) – (R2 x I2) = 0

Já a segunda malha, a equação ficará:

(R2 x I2) – (R3 x I3) = O 

Para fechar o circuito, a terceira malha terá a equação:

(R3 x I3) – (R1 x I1) = 0 

Com a Lei das Malhas, é possível desvendar os mistérios de cada circuito mais complexo entendendo como a energia elétrica se comporta em cada componente. 

Tem dúvida sobre mais algum assunto cobrado no ENEM? Aqui no blog do Museu WEG, você encontra tudo que precisa para se preparar para a prova de Ciências da Natureza e suas Tecnologias. 

Não se esqueça de seguir o Museu WEG no Instagram, lá a gente sempre traz a explicação simplificada de assuntos cobrados em vestibulares e no ENEM.

Fontes:
Gustav Robert Kirchhoff – SO Física
Leis de Kirchhoff – Brasil Escola
Leis de Kirchhoff em Física – Descomplica

Quais são as 3 Leis de Kepler?

Saiba como as 3 leis de Kepler revolucionaram a astronomia e a compreensão do movimento dos planetas.

Johannes Kepler foi um matemático e astrônomo alemão que contribuiu significativamente para a compreensão do movimento dos planetas e para o desenvolvimento da astronomia moderna.

Alguns pensadores da época acreditavam que a Terra era o centro de todo o Universo, conhecido como Geocentrismo, e ficava parada enquanto o sol girava ao redor dela. Naquela época, a percepção religiosa era a única verdade.

Posteriormente, surgiu a ideia de que, na verdade, o Sol estivesse no centro e a Terra que era responsável por percorrer ao seu redor (Heliocentrismo). Mesmo que essa ideia fizesse muito mais sentido, na Idade Média, essa opinião ainda não era bem aceita pela igreja. 

Foi aceita quando o matemático Johannes Kepler provou, por meio de seus cálculos, que o modelo Heliocêntrico era o mais correto. Por meio desses estudos, ele então publicou as 3 Leis de Kepler

No conteúdo a seguir, você conhecerá um pouco mais sobre ele e entenderá as leis que ele instituiu a partir do seu estudo.

Quem foi Johannes Kepler?

Astrônomo e matemático alemão, Johannes Kepler nasceu em 1571. Auxiliar de Tycho Brahe, grande nome da astronomia da época, o professor Kepler assumiu os estudos de seu mentor após sua morte e assim começou a revolucionar o mundo da astronomia. 

Em 1609, publicou o livro Astronomia Nova, no qual se encontram suas duas primeiras leis e, em 1619, publicou seu maior trabalho, Harmonia do Mundo, no qual apresenta sua terceira e última lei. 

As 3 Leis de Kepler

Johannes Kepler trouxe para a ciência um estudo mais aprofundado do que Tycho Brahe, Ptolomeu e Nicolau Copérnico já vinham pesquisando anteriormente. 

Isso aconteceu após Kepler perceber que a velocidade orbital dos planetas ao redor da Terra não era constante, concluindo que a órbita dos planetas, na verdade, era elíptica e não perfeitamente circular. 

As 3 Leis de Kepler são destinadas ao movimento planetário, sendo definidas como Lei das Órbitas Elípticas (1), Lei das Áreas (2) e, por fim, Lei dos Períodos (3). Saiba mais sobre elas!

1ª Lei de Kepler: Lei das Órbitas Elípticas

A 1ª Lei de Kepler diz respeito ao formato das órbitas dos planetas que giram ao redor do Sol. Kepler deduziu que os planetas não giram em uma linha perfeitamente redonda ao redor do Sol, e sim de uma linha elipse, quase um desenho de um ovo.

Para ficar mais claro, desenhe um ovo em uma folha. Dentro do ovo, perto da borda superior, desenhe um sol e, exatamente na linha da borda inferior, desenhe a Terra. Pronto, agora você tem uma forma de visualizar o que estamos falando por aqui. 

O que é possível perceber com a 1ª Lei de Kepler é que, em determinados momentos, os planetas estarão mais afastados do Sol (conhecido como ponto Afélio), enquanto em outros eles estarão mais perto (conhecido como ponto Periélio).

Lei das Órbitas Elípticas: dica para o ENEM

Nos vestibulares, geralmente há uma pegadinha dizendo que, quando a Terra está no ponto Afélio, ela está no inverno e, quando ela está no ponto Periélio, ela está no verão. 

Isso está errado, fique atento! O que determina as estações do ano é a inclinação da Terra, e não o percurso orbital.

2ª Lei de Kepler: Lei das Áreas

Antes de aprofundar a explicação, pegue seu desenho de Ovo-Terra-Sol e faça uma linha da Terra em direção ao Sol. Agora faça mais uma Terra perto dessa primeira e mais duas Terras iguais, porém, ao lado do Sol (todas com uma linha individual que as ligue com o Sol).

Kepler definiu que a velocidade percorrida dentro dessas áreas desenhadas é sempre igual. É por isso que a Lei das Áreas diz que a velocidade do percurso dessa linha que liga a Terra com o Sol é sempre igual. 

Quanto mais perto do Sol (ponto Periélio), maior será a velocidade percorrida pelo planeta; quanto mais longe (ponto Afélio), mais devagar ele irá andar. 

Essa é a Lei que, para muitos físicos, é conhecida como a mãe da astrofísica. Além disso, essa Lei foi muito importante para que Newton descobrisse a Gravidade e, posteriormente, Einstein desenvolvesse a sua Lei da Gravidade Geral.

3ª Lei de Kepler: A Lei dos Períodos

Pegue o seu desenho de Ovo-Terra-Sol e imagine que suas Terras estejam andando pela linha do ovo. Perceba que, conforme a Terra vai caminhando, as linhas imaginárias desenhadas vão mudando de tamanho. 

Esta é a 3ª Lei de Kepler: conforme acontece o movimento orbital, a distância entre a Terra e o Sol sofre uma mudança. Quando a Terra está no Afélio, é possível ver uma distância bem grande entre ela e o Sol, mas, quando ela está no Periélio, essa distância fica bem curtinha. 

Quanto mais longe o planeta estiver do Sol (Afélio), maior será o tempo que ele levará para percorrer a órbita. Essa distância é chamada de Período. Esta é a fórmula final dessa Lei:

T²/r³=K

NOMENCLATURA:

T = Período orbital (distância entre a Terra e o Sol) 

r = Raio médio da órbita 

K: Valor constante (velocidade de todos os corpos que orbitam a Terra) 

Para descobrir o valor da constante (K), você pode seguir a seguinte fórmula:

K= 4²/GMs

NOMENCLATURA:

G = Constante da gravitação do Universo M = Massa do Sol

A Lei dos Períodos: Dica para o ENEM

Para não se perder com tantas fórmulas, você pode resumi-las em apenas uma: 

T²/R³= 4π²/GM

E aí? Curtiu este conteúdo? Então corra para o Blog do Museu WEG e encontre mais assuntos como este! Você também pode seguir o Instagram do Museu WEG para sempre ficar por dentro das novidades que saem por aqui. 

Fontes:

Leis de Kepler – InfoEscola

Leis de Kepler – Brasil Escola

Leis de Kepler: quais são? – Stoodi

Fenômenos Ondulatórios: Entenda o que são e quais os tipos existentes

Descubra a incrível ciência das ondas: entenda o que são fenômenos ondulatórios e saiba quais são os tipos existentes. Acesse agora nosso blog!

Os fenômenos ondulatórios são os princípios da física representados por ondas. Existem diversos tipos de ondas, como por exemplo, a voz humana ou o micro-ondas. 

Enquanto a voz humana emite as ondas sonoras, ondas que criam uma perturbação nas moléculas de ar que se propagam até o ouvido humano, o micro-ondas já lida com uma onda diferente, trabalhando apenas com ondas eletromagnéticas, gerando calor. 

Existem também as ondas físicas, como a de balançar uma corda, as ondas do mar, entre outros exemplos (que são cobrados no ENEM). Agora que você já entende o conceito de ondas, vamos conhecer os tipos de fenômenos ondulatórios? Continue a leitura!

Tipos de Fenômenos Ondulatórios

Os fenômenos ondulatórios são divididos em 7 tipos, mas os mais importantes (em grau de relevância para o ENEM) são 3: Reflexão, Refração e Difração. Confira!

Reflexão

A reflexão é uma onda que bate em um objeto e retorna para o seu local de origem. Para ficar mais claro, pense na última vez que você ouviu o eco da sua voz. Você falou algo, sua voz se projetou através de uma onda sonora, bateu em um obstáculo e voltou para você.

Como a onda “não mudou de meio”, a sua velocidade, a sua frequência e o seu comprimento de onda permanecem sendo os mesmos. Você pode decorar esse conceito pensando no seguinte: quando você se olha no espelho, você encontra uma imagem exata sua, ou seja, nada mudou. 

Refração

Diferente da Reflexão, a Refração acontece quando um objeto reflete uma parte da onda e deixa que outra parte dela o atravesse distorcendo a direção original. 

A grande sacada aqui é entender que, como o “meio irá mudar”, a velocidade e o comprimento de onda irão mudar mantendo apenas a frequência igual à que estava antes. 

Para ficar mais claro, pense em uma lente que reflete a luz azul. Uma pessoa que usa óculos com essas lentes geralmente vê um reflexo na cor azul em cada lente (o reflexo da luz), mas também consegue enxergar o atravessar da luz para os olhos.

Difração

O oposto de Reflexão, a Difração refere-se a uma onda que atravessa um objeto refletindo parte da energia e absorvendo uma pequena quantidade dela, enquanto a maior parte dessa onda segue o percurso normalmente. 

Ela contorna um obstáculo e, como sofre uma perturbação, gera um espalhamento das ondas. A difração “é ainda mais intensa quando o comprimento de sua onda tem valor próximo ou maior que as dimensões da fenda por onde ela está passando”. 

Para ficar claro, pense em duas pessoas conversando, uma de cada lado de um muro. Mesmo que não se vejam, ambas conseguem se ouvir, pois as ondas sonoras conseguem atravessar o muro. 

Polarização

A polarização funciona como uma peneira na qual as ondas transversais são filtradas. É como se a polarização fosse uma difração direcionada. Enquanto a difração espalha a onda, a polarização a direciona para apenas uma direção.

Dispersão

Ligada diretamente à velocidade de propagação de uma onda, a dispersão acontece quando várias ondas com velocidades diferentes se unem e geram uma onda única alterando a sua velocidade de propagação.

Interferência

Para ficar mais fácil de entender a interferência, lembre-se da cena em que Harry Potter e Lord Voldemort têm suas varinhas ligadas por dois feitiços diferentes. A interferência acontece dessa forma. 

No fim de Harry Potter e As Relíquias da Morte – Parte 2, o feitiço de Harry sobrepõe o de Voldemort exatamente como acontece com um fenômeno de interferência. 

Em palavras mais técnicas, a interferência acontece quando há uma sobreposição entre duas ou mais ondas, transformando ambas em uma onda resultante. 

Diferente da polarização, na interferência, é possível que ela seja uma onda que soma a amplitude das demais ondas (interferência construtiva) ou pode ser a diferença entre as amplitudes das ondas anteriores e a amplitude da onda unificada (interferência destrutiva).

Ressonância

A ressonância é como se fosse um amplificador de frequência no qual a frequência natural da onda receberá uma excitação que a ampliará. 

Qual é a diferença entre Fenômenos Ondulatórios Mecânicos e Eletromagnéticos?

A onda mecânica necessita de uma interferência para acontecer (como jogar uma pedra em um rio para ver as ondas), as ondas eletromagnéticas são aquelas que lidam com o eletromagnetismo (ondas de rádio). 

Em outras palavras, os fenômenos ondulatórios mecânicos “precisam de um meio para se propagar”, enquanto os fenômenos ondulatórios eletromagnéticos “não precisam, podendo se propagar até no vácuo”. 

Curtiu este conteúdo? Então dê uma conferida no Blog do Museu WEG para encontrar mais assuntos que são cobrados no ENEM. 

Você também pode seguir o Museu WEG no Instagram, lá sempre são compartilhadas pegadinhas do mundo da ciência que geralmente são usadas em vestibulares. 

Fontes:

Fenômenos ondulatórios – Globo Educação

Fenômenos Ondulatórios na Prova do Enem – InfoEnem

Fenômenos ondulatórios – Mundo Educação

O que é Energia Mecânica e quais são seus principais fundamentos?

Entenda de uma vez por todas o que é energia mecânica e como ela funciona o seu dia a dia. Venha aprender com o Museu WEG!

A natureza é tão perfeita que, em cada canto do planeta, existe alguma energia sendo transferida ou transformada a todo instante. É isso mesmo! A energia é transferida de um corpo para outro ou transformada de um tipo para outro. E você nem precisa ir tão longe na imaginação para encontrar exemplos. 

É o caso da roda gigante do Beto Carrero. Se nós lhe contássemos que ela funciona por meio da transferência de energia, você acreditaria? 

É justamente sobre esta transferência ou transformação de energia que falaremos hoje. Para aprender mais sobre o que é energia mecânica, continue a leitura!

O que é Energia Mecânica? 

A energia mecânica, de modo bem simples, é a energia produzida pelo trabalho de um corpo e que pode ser transferida para outro. O que isso quer dizer na prática? Significa que a energia contida num corpo em movimento pode ser transferida para outro corpo, que também passa a se mover. Como por exemplo, a água que cai sobre uma roda d’água e faz com que esta gire. 

No dia a dia, estamos constantemente rodeados por trabalhos da energia mecânica e, para deixar tudo ainda mais claro, com base nas motivações desses movimentos, essa grandeza foi dividida em três vertentes diferentes: energia cinética, potencial gravitacional e potencial elástica. 

Energia Cinética

A energia cinética está ligada à massa e à velocidade, ou seja, está totalmente ligada ao movimento que um corpo está exercendo no espaço. E esta energia pode ser transferida de um corpo para outro.  

Para ficar mais claro, imagine um jogo de sinuca. Você exerce a força no taco acertando a bola branca e, quando a bola branca atinge as demais bolas da mesa, sua energia cinética é transferida para as demais levando-as ao movimento e desacelerando a bola branca. 

É como se a bola branca “doasse” parte da sua velocidade para que as outras bolas entrem em movimento. A fórmula da energia cinética é:

Ec = m.v²/2

Tabelinha da nomenclatura:

Ec =  Energia cinética 

m = Massa 

v = Velocidade 

Energia Potencial Gravitacional

Já a energia potencial gravitacional é a forma de energia associada à altura do corpo com relação ao solo. Lembra da montanha russa?

Quando o carrinho está subindo, sua energia potencial gravitacional está aumentando, pois sua altura em relação ao solo está aumentando. quando o carrinho desce puxado pela gravidade, ele aumenta sua velocidade, transformando a energia potencial gravitacional em energia cinética. 

A fórmula da energia mecânica potencial gravitacional é:

Epg = m.g.h

Tabelinha da nomenclatura:

Epg=  Energia potencial gravitacional  

m = Massa 

g = Aceleração da gravidade 

h = Altura 

Energia Potencial Elástica

Por fim, a energia potencial elástica é a forma de energia que é adquirida por corpos elásticos ou flexíveis capazes de retornarem ao seu formato original após sofrerem algum tipo de deformação, como por exemplo molas e elásticos.  

Um grande exemplo da energia potencial elástica está no uso de um arco e flecha. Ao puxar a corda, o arco deforma-se como uma mola. Ao soltar, volta à sua forma original gerando o movimento da flecha. Neste caso a energia potencial elástica do arco transforma-se em energia cinética transferida para a flecha. A energia potencial elástica depende da constante elástica do corpo, bem como do tamanho da deformação sofrida por ele. A fórmula da energia mecânica potencial elástica é:

Epel = k.x²/2

Tabelinha da nomenclatura:

Epel =  Energia potencial elástica 

k = Constante elástica 

x = Deformação 

Você pode aprender na prática sobre energia mecânica visitando o Museu WEG. Em exposição, contamos com a experiência de uma bicicleta que, ao ser pedalada, transforma energia mecânica de movimento (energia cinética) em energia elétrica. É BEM legal! Chame seus amigos e venha conferir! 

Você também pode conhecer o Museu WEG pelo Tour Virtual. Assim você aprende tudo sobre motores elétricos e confere todas as obras em exposição e visita no Museu WEG sem sair de casa. Para acessar o Tour Virtual, é só clicar aqui

Gostou deste conteúdo? Então não se esqueça de seguir o Museu WEG no Instagram! Assim você sempre será avisado em primeira mão sobre todos os novos conteúdos publicados no Blog do Museu.

Fontes:

Energia mecânica – PrePara Enem

Os tipos de energia mecânica – Plataforma Enem

O que é energia mecânica? – Brasil Escola