Categoria: Tecnologia

Lixo

WEG lança solução para a geração de energia elétrica a partir do lixo

Um novo jeito de produzir energia e colaborar com o planeta!

Já imaginou como a WEG, uma empresa presente no mundo todo, poderia trabalhar para a diminuição do consumo e produção de lixo, incentivando o aproveitamento de Resíduos Sólidos Urbanos?

Gerando energia a partir do lixo!

A Política Nacional de Resíduos Sólidos estabelece princípios, objetivos, metas e ações, tais como o  Plano Nacional de Resíduos Sólidos — elaborado pelo Ministério do Meio Ambiente, com o apoio do Instituto de Pesquisa Econômica Aplicada (IPEA) —, para contemplar os diversos tipos de resíduos gerados, e buscar alternativas de gestão e gerenciamento dos mesmos. Suas propostas refletem entre os diversos setores da economia colaborando com o crescimento econômico e a preservação ambiental com desenvolvimento sustentável.

No Brasil mais de três mil municípios precisam se ajustar à Política Nacional de Resíduos Sólidos.

O Programa Lixão Zero, lançado recentemente pelo Ministério do Meio Ambiente, vem sendo difundido, com ações bem sucedidas, no mundo todo. O movimento debate a diminuição do consumo e produção de lixo, o incentivo ao aproveitamento de recicláveis e orgânicos, educação ambiental, práticas sustentáveis, entre outros temas.

Buscando se adequar a estes programas, a WEG apresentou recentemente uma solução de geração de energia elétrica a partir da gaseificação de resíduos sólidos urbanos (RSU). A solução, que começará a ser comercializada na modalidade EPC (Engineering, Procurement and Construction), além de turbinas, redutores, painéis, condensadores, geradores e transformadores, prevê ainda o fornecimento de toda a engenharia, gestão de compras, integração e construção de usinas de gaseificação de resíduos sólidos.

A solução para a geração de energia elétrica a partir da gaseificação de resíduos sólidos urbanos representa uma oportunidade concreta para o atendimento da legislação brasileira, com alto impacto ambiental, econômico e social para os municípios brasileiros.

 

Como funciona?

Na tecnologia oferecida, o RSU é processado em várias etapas, transformado o gás combustível em um processo de gaseificação, totalmente livre de gases tóxicos, que ao ser queimado gera calor em uma caldeira de vapor. Este vapor pode ser utilizado no acionamento de uma turbina para produção de energia elétrica. O processo possibilita o total aproveitamento do poder calorífico dos resíduos reduzindo a geração de passivo ambiental.

usina

Usina Waste-to-Energy

Diferente do processo de incineração (mais indicado para grandes centros urbanos) e do processo de produção de biogás (utilizado em aterros ou biodigestores), o método de aproveitamento energético através da gaseificação é o mais indicado para o lixo brasileiro, rico em orgânicos, com elevado grau de umidade e com alto potencial de geração de gases. O sistema de geração aqui apresentado é ideal para cidades de pequeno e médio porte, reduzindo ou eliminando a necessidade de aterros sanitários.

“Atenderemos integralmente ao Plano Nacional de Resíduos Sólidos, incluindo os requisitos de emissões de gases dentro das diretrizes exigidas, com comprovada viabilidade técnica e ambiental”, explica Eduardo de Nóbrega, Diretor Superintendente da WEG Energia. “Nossa solução também vai ao encontro do Programa Lixão Zero”, acrescenta.

A tecnologia é 100% nacional e, além de endereçar a questão ambiental, é totalmente viável do ponto de vista econômica e financeira. “O custo de operação de uma planta de gaseificação está alinhado com a realidade das cidades brasileiras. O payback de uma usina de 2,5 MW é de aproximadamente 45 meses”, enfatiza Eduardo.

Outras vantagens do processo de gaseificação são: a possibilidade do uso de todo o lixo, sem necessidade de separação, a redução do custo logístico de destinação dos resíduos, podendo-se construir plantas em locais estratégicos e a produção de gás totalmente livre de furanos e dioxinas, o que dispensa a necessidade de sistemas complexos de tratamento dos gases.

Veículos-elétricos

A história da Mobilidade Elétrica

O primeiro carro elétrico que se tem notícias foi construído por William Morrison, nos EUA, em 1891.

A história da Mobilidade Elétrica começa nos anos de 1800, quando inovadores da Hungria, Holanda e Estados Unidos trabalharam no primeiro veículo movido a bateria. O primeiro carro elétrico que se tem notícias foi construído por William Morrison, nos EUA, em 1891. Logo, em 1900 os veículos elétricos ganharam popularidade, somando 38% de todos os veículos nas ruas dos EUA, comparados a 22% movidos a gasolina. Thomas Edison e Henry Ford trabalharam juntos para construir um veículo elétrico comprável. Em 1912, o estoque global de veículos elétricos alcançou 30.000 unidades.

Em 1908, a produção em série do Ford Model T baixou o custo dos carros a gasolina, que, por sua vez, baixou em um terço do preço de um carro elétrico. Em 1912 o preço de um carro a gasolina era por volta de US$ 650, um carro elétrico ficava em torno de US$ 1750.

history-electric-car

Primeiro veículo elétrico a chegar a 100 km/h.

Mais para frente, durante a década de 1920, devido ao aumento da quantidade de postos de gasolina nos EUA, a construção de um sistema de rodagem mais desenvolvido para conectar as cidades que permitia os motoristas realizarem longas distâncias, e a descoberta doméstica de petróleo (o petróleo barato do Texas), os carros elétricos perderam valor de mercado, já que esses fatores contribuíram para que os carros a gasolina dominassem a indústria.

Com novas rodovias construídas se estendendo de oceano a oceano e de Norte a Sul, abrindo os interiores para negociantes urbanos, o automóvel se tornou um “agente de férias” para os norte-americanos. Como os carros elétricos tinham uma dirigibilidade de 30 a 40 milhas (50 a 65 km) e infraestrutura de carga limitada, eles acabavam sendo impróprios para longas viagens.

Com a expansão dos postos de gasolina em todo lugar, o combustível se tornava barato e facilmente disponível no interior do país, e apenas alguns poucos norte-americanos fora das cidades tinham acesso à eletricidade naquela época. Em 1935, os carros elétricos foram extintos com o domínio do mercado pelos carros a gasolina.

Com a precoce expansão e queda dos carros elétricos, as pesquisas e o desenvolvimento sobre os mesmos continuaram, pois já na década de 1960 era preciso pensar em meios para reduzir a poluição do ar e diminuir a dependência do petróleo no rastro da crise de 1973. 

Em 1990 foram iniciadas as exigências dos  Veículos Emissão Zero da Califórnia (VEZ), que incentivaram os fabricantes automotivos a se comprometerem com um limite anual de vendas de carros elétricos através da distribuição de créditos VEZ.

Foi apenas ao final do século que os veículos elétricos começaram a voltar ao cenário. Em 1997, o Toyota Prius se transformou no primeiro veículo elétrico híbrido produzido em série. Em 2006, o Tesla Roadster foi introduzido pela fabricante automotiva novata Tesla Motors, localizada no Vale do Silício, e o carro esporte de luxo elétrico começou a alterar as percepções do público. Em 2011, a  Nissan produziu o Leaf, comercializado como “carro de família, ecológico, líder e de preço popular”.

Em 2017, as montadoras tradicionais passaram a investir em veículos elétricos. Após uma década da aceitação inicial, espera-se que os carros elétricos virem tendência de mercado até o início da década de 2020.

Novos planos foram registrados pelo mundo todo, a Inglaterra e a França, por exemplo, anunciaram planos para banir a venda de novos carros a gasolina e a diesel até 2040, enquanto a Noruega propôs a meta ambiciosa de substituir totalmente os carros a gasolina até 2025.

  

WEG na indústria da Mobilidade Elétrica

Está no DNA da companhia acompanhar as tendências de mercado e antecipar oportunidades. Na área de mobilidade elétrica, A WEG tem uma longa tradição no fornecimento de sistemas de tração elétrica para ônibus, caminhões, trólebus, trens, navios e embarcações, além de sistemas para recarga de veículos elétricos.

Recentemente a WEG apresentou ao mercado uma parceria com a Volkswagen Caminhões e Ônibus (VWCO), para o desenvolvimento do primeiro Híbrido Volksbus e-Flex projetado no Brasil e do primeiro caminhão com tração elétrica fabricado no Brasil. Ambos são tracionados por motores elétricos e controles eletrônicos fabricado pela WEG.

volksbus-e-flex

Ônibus e-Flex da VWCO conta com tecnologia WEG

A experiência da companhia neste mercado de tração e mobilidade elétrica lhe rendeu também a oportunidade de participar do desenvolvimento da primeira aeronave com propulsão elétrica do país, junto com a Embraer. O projeto está em desenvolvimento e já tem data para decolar.

A tecnologia de powertrain da WEG, desenvolvida ao longo de anos, testada e em constante inovação, habilitou a WEG para estes grandiosos projetos de cooperação científica e tecnológica.  

Junto com grandes parceiros a Companhia está trabalhando não só para viabilizar a propulsão elétrica de veículos de transporte e aeronaves, mas também para elevar a capacidade tecnológica da WEG, e do Brasil, levando o nosso país a um patamar ainda mais competitivo, referência em tecnologia sustentável.

 

Conheça o último lançamento da WEG neste segmento

estacoes

Estações de Recarga de Veículos Elétricos: WEMOB – WEG Electric Mobility. 

Desenvolvida especialmente para atender as necessidades de potência, velocidade de recarga e segurança que um veículo elétrico precisa, a linha de Estações de Recarga da WEG – WEMOB – está disponível em três diferentes modelos: Wall, projetada para residências e condomínios e com instalação em parede, Parking, desenvolvida especialmente para uso compartilhado em estacionamentos públicos e privados, como shoppings e praças, e Station, voltada para postos de recarga rápida. As linhas estão disponíveis para recarga lenta, semirrápida e rápida, com potências de 7,4 a 150 kW.

 “Os veículos elétricos são uma tendência mundial, e ter estações de recarga adequadas para todas as necessidades será indispensável nesse novo cenário. Estamos ampliando nosso portfólio de soluções para este segmento e nos preparando para atender as principais necessidades da mobilidade elétrica”, enfatiza Manfred Peter Johann, Diretor Superintendente da WEG Automação.

palestrabann

Você sabia que no calendário nacional existe uma semana dedicada à Ciência e Tecnologia?

E que o período foi criando pelo Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) para aproximar o tema da população, por meio de eventos envolvendo instituições de todo o País?

Fique ligado que a “Semana Nacional de Ciência e Tecnologia” é neste mês e acontece entre os dias 21 e 27 de outubro.

Várias instituições estão preparando ações educativas para comemorar a data e é claro que o Museu WEG de Ciência e Tecnologia não poderia ficar de fora, afinal o nosso acervo está totalmente direcionado a esta temática e nós adoramos compartilhar conhecimento com os nossos visitantes.

Para marcar a data vamos oferecer uma palestra sobre: “Geração de Energia através de Resíduos Sólidos Urbanos (RSU)”. O palestrante será o Engenheiro Alexandre dos Santos Fernandes, Gerente do Depto. Centro de Negócios de Energia da WEG.

A apresentação será direcionada para estudantes, colaboradores da WEG e todos que se interessam pelo tema!  A participação é gratuita e a inscrição deve ser feita antecipadamente AQUI.

Não fique de fora, aproveite a Semana Nacional de Ciência e Tecnologia para atualizar conhecimentos e visitar o maior Museu de Ciência e Tecnologia do Sul do Brasil.

Palestra: Geração de Energia através de Resíduos Sólidos Urbanos (RSU)

Dia: 22/10/2019

Horário: 19h às 20h30

Local: Museu WEG de Ciência e Tecnologia

Inscrições: https://forms.gle/LDHjPX19gxtLwQ2c6

 

Tintas

WEG Tintas: história e curiosidades

A WEG Tintas, inicialmente chamada de WEG Química, foi fundada em novembro de 1983, em Guaramirim – Santa Catarina.

Você sabia que o Brasil está entre os 5 maiores mercados mundiais de tintas? A posição foi alcançada porque indústrias do setor investiram pesado em tecnologia de ponta e sustentabilidade para suprir a demanda do mercado, que está cada vez mais competitivo.

O constante desenvolvimento tecnológico na fabricação de tintas não se limita em melhorar suas propriedades químicas e mecânicas. Mas também com a obtenção de tintas ecologicamente corretas e seguras, além de outros aspectos, como a redução de custos, diminuindo, por exemplo, as exigências na preparação das superfícies ou permitindo a aplicação em condições ambientais agressivas.

 

Tintas mais resistentes

A partir da revolução industrial, com o desenvolvimento de máquinas e equipamentos, a pintura deixou de ter apenas o papel decorativo para também assumir o de proteção contra as agressividades do meio em que o produto atuará, por exemplo, um motor de uma plataforma de petróleo deverá ser resistente às intempéries e à maresia.

No processo produtivo, as tintas são aplicadas normalmente em duas etapas: a pintura de base (primer), que ocorre logo no início em alguns componentes e a pintura de acabamento, quando o aspecto visual é também importante.

 

WEG Tintas e Vernizes

De uma pequena fábrica de motores elétricos no interior de Santa Catarina, a WEG se tornou uma indústria focada em soluções eletroeletrônicas sinérgicas presente no mundo inteiro. As empresas do grupo são organizadas em 5 grandes negócios, entre eles está o mercado de Tintas.

weg-tintas-guaramirim-balde-br-280

Balde de Tinta em frente à WEG Tintas, em Guaramirim/SC.

Foto: O Correio do Povo

A WEG Tintas, inicialmente chamada de WEG Química, foi fundada em novembro de 1983, em Guaramirim – Santa Catarina, trabalhando com tintas industriais líquidas, que tinha como principal cliente a WEG Motores. Em 2010, a empresa passou a se chamar WEG Tintas.

Desde então, os investimentos em tecnologia e treinamento da equipe são constantes. A WEG caminha frente às atualizações tecnológicas, buscando um objetivo: fabricar tintas ecologicamente corretas, preservando o meio ambiente, investindo em processos e máquinas de alta tecnologia, garantindo entrega em tempo cada vez mais reduzido e com alta qualidade.

Entre suas soluções com alto padrão de qualidade e o mínimo de impacto ambiental estão: desenvolvimento de tintas em pó; desenvolvimento de tintas líquidas (industriais e repintura automotiva) e desenvolvimento de resinas e vernizes eletroisolantes.

Presente em diferentes mercados, oferece as melhores soluções em tintas no Brasil e América Latina. A WEG atua no mercado de tintas industriais, OEM e automotivas, pesquisando e desenvolvendo produtos de alta tecnologia. Destaca-se também pela presença nos segmentos de tintas para plásticos, vidros e espelhos.

No mercado de Tintas líquidas, Industriais e anticorrosivas, a WEG tem fornecido seus sistemas de pintura a diversos estrutureiros em todo o território nacional. Essas estruturas estão presentes em obras dos mais variados segmentos como estádios, shoppings, indústrias, aeroportos, portos, plataformas marítimas e refinarias. Além disso, conta com soluções amplas e eficazes para a área marítima, atendendo embarcações de todos os portes, do barco de pesca à Marinha Brasileira.

A WEG Tintas também possui uma avançada tecnologia para o desenvolvimento de tintas em pó, os produtos podem ser utilizados em diversos segmentos como: perfis de alumínio, móveis metálicos, eletrodomésticos, luminárias, rodas etc.

Outro mercado que atende é o de esmaltação e impregnação. Os esmaltes para fios possuem alto desempenho comprovado em máquinas de aplicação com alta classe térmica, para aplicação em todas as bitolas de fios e nos mais variados tipos de máquinas. Os vernizes à base de poliéster e epóxi, possuem excelentes propriedades dielétricas, flexibilidade, dureza, resistência química e aderência para motores, transformadores e geradores de baixa e alta tensão.

 

É visto que a WEG Tintas tem ampliado seu portfólio, buscando estar presente no mercado de Tintas e Vernizes com o que há de melhor em qualidade, tecnologia e sustentabilidade. Já são 36 anos neste mercado que não para de crescer. E há muito mais por vir!

Luz

Por que nada pode viajar mais depressa que a luz?

Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.

Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.

A teoria de que nada pode viajar mais rápido do que a velocidade da luz no vácuo significa, basicamente, que nada pode ultrapassar os 299.792.458 metros por segundo ou arredondando, 300 mil km por segundo. Essa ideia foi proposta por Albert Einstein em sua Teoria da Relatividade, baseada em estudos anteriores de diversos cientistas para estabelecer que o limite de velocidade universal é o que a luz atinge quando se desloca pelo vazio do cosmos. Você sabe por quê?

 

Impossibilidade física

Isso nos leva à Teoria da Relatividade Especial de Albert Einstein, de 1905, que diz que a velocidade da luz é o que conecta o tempo e o espaço. Segundo o catedrático de Física Antonio Ruiz de Elvira, não é possível deslocar um objeto a uma velocidade superior à da luz porque, de forma simples e resumida, a única coisa capaz de mover uma partícula com massa é outra força que viaje a essa velocidade.

luz

Zunindo pelo vácuo (BBC)

De acordo com Antonio, o objeto “empurrado” acabaria ganhando massa quando submetido a grandes velocidades. E, considerando que o ganho aumentaria bastante conforme o corpo se aproximasse da velocidade da luz, isso interferiria em sua capacidade de deslocamento. Sendo assim, nenhum corpo pode viajar mais depressa do que a força que o empurra.

Segundo o que prevê a Teoria da Relatividade, o aumento de massa aconteceria rapidamente conforme a velocidade do objeto se aproximasse à da luz. E, quanto mais próximo desse limite o corpo chegasse, considerando que o ganho de massa aumentaria infinitamente, seria necessária uma força — também — infinita para que o objeto se elevasse à velocidade da luz.

A famosa equação de Einstein tem uma parte “menos lembrada”, que descreve como a massa de um objeto muda quando há movimento envolvido: E = mc² (Energia é igual a massa vezes a velocidade da luz ao quadrado). Na verdade, a equação completa é E²=(mc²)²+(pc)². A parte final é a que descreve como a massa do objeto muda quando há movimento envolvido.

 

Teoria ameaçada

Em 2011, foi anunciada uma descoberta que ameaçou anular tudo o que sabemos sobre a velocidade da luz, a Teoria da Relatividade e a física moderna!

Isso aconteceu na Suíça, quando físicos europeus conduziram um experimento chamado Oscillation Project with Emulsion-tRacking Apparatus (Opera, na sigla em inglês), para estudar o fenômeno da oscilação de neutrinos. Diferentemente das partículas de luz, os neutrinos são partículas que possuem uma pequena quantidade de massa. Por isso, segundo a Teoria da Relatividade Especial de Einstein, deveriam viajar a uma velocidade menor que a da luz.

No entanto, naquele ano, o projeto chamou a atenção de toda a comunidade internacional quando anunciou a detecção de neutrinos se movimentando em uma velocidade superior à da luz, o que poderia revolucionar a Física moderna.

No entanto, tudo não passou de um mal entendido por causa de um cabo de um relógio digital em um laboratório, que estava mal conectado. Quando alguém percebeu e o conectou corretamente, tudo voltou à normalidade e ficou comprovado que os neutrinos estavam viajando a uma velocidade mais baixa que a da luz.

Toda a Física moderna foi questionada, portanto, por causa de um cabo de fibra ótica solto, que fez com que a passagem do tempo fosse registrada de maneira incorreta. Acredita?

Mas é assim que a ciência funciona e deve funcionar. Cientistas cometem erros e aprendem com eles. É preciso provas muito fortes para mudar os rumos da Física, e é a partir de testes, experimentações, erros e acertos que isso é possível — mesmo que leve séculos.

 

UsinasJPG

Como funcionam as usinas nucleares?

O Brasil possui um elemento radioativo em abundância: o urânio. Ele é capaz de gerar uma enorme quantidade de energia através das usinas nucleares. Você sabe como isso funciona?

O sol é a maior fonte de energia em nosso planeta, e sua força vem dos átomos. A ciência nos deu a chave para controlar toda essa energia e sua matéria prima é o urânio, matéria em abundância em nosso país. Alguns átomos de urânio são capazes de liberar tanta energia, que  uma pequena pastilha pode gerar eletricidade suficiente para abastecer uma casa por um ano. 

O urânio é um elemento radioativo, ele é o átomo com o núcleo mais pesado que existe naturalmente na Terra. E é em usinas nucleares que ele é manipulado para produzir energia elétrica.

Uma usina nuclear é uma instalação industrial que produz energia elétrica a partir de reações nucleares. As reações nucleares de elementos radioativos, como o urânio, produzem uma grande quantidade de energia térmica. Essas grandes instalações são construídas envolvidas por uma contenção feita de ferro armado, concreto e aço, tudo isso para proteger o reator nuclear de emitir radiações para o meio ambiente.

No vídeo abaixo você poderá entender, de forma resumida, como funciona o processo de reação nuclear — da transformação de átomos em combustível para as usinas até a distribuição de energia.

Basicamente, uma usina nuclear é composta por três fases: a primária, a secundária e a refrigeração. Na primária, o urânio é colocado no vaso de pressão. Com a fissão (quebra do núcleo de um átomo instável em dois núcleos menores), há a produção de energia térmica. Nesta etapa, a água é utilizada para resfriar o núcleo do reator nuclear.

Na etapa secundária, a água que foi aquecida no sistema primário (agora radioativa) é transformada em vapor de água em um sistema chamado gerador de vapor. O vapor produzido no sistema secundário é utilizado para movimentar a turbina de um gerador elétrico, o que irá produzir a energia.

Em seguida, o vapor de água produzido no sistema secundário é transformado em água através de um sistema de condensação, ou seja, através de um condensador que é resfriado por um sistema de refrigeração de água. Esse sistema bombeia água do mar (fria), através de circuitos de resfriamento que ficam dentro do condensador, a água do mar vai resfriar o sistema para fazer com que a água que foi vaporizada volte para o sistema na forma líquida.

Por fim, a energia que é gerada através deste processo de fissão nuclear chega às residências por meio das redes de distribuição de energia elétrica. Veja abaixo a esquemática:

usinas-esquema

Esquemática de uma Usina Nuclear

 

Existem usinas nucleares no Brasil?

Sim! Elas estão localizadas na Central Nuclear em Angra dos Reis, no Rio de Janeiro. As usinas chamadas de Angra 1 e Angra 2, são responsáveis pela produção de 3% da energia consumida no país. Uma terceira usina está sendo construída, mas está longe da conclusão.

Por ser um país tropical e ter uma imensidade de rios formando grandes bacias hidrográficas, o Brasil tem diversas fontes de energia, como solar, eólica, hidrelétrica, das marés, do etanol, da biomassa, etc. O uso da energia nuclear vem da necessidade de diversificar a matriz energética brasileira – mesmo que o custo da energia nuclear não seja barato. Leia mais sobre a matriz energética brasileira clicando aqui. =)

RobôsJPG

Os robôs que vão a lugares que os seres humanos não conseguem ir

Uma nova geração de robôs está sendo criada para ir a lugares onde nós, seres humanos, não conseguimos ir — ou até conseguimos, mas seria muito difícil sobreviver! Vamos conhecê-los?

Uma nova geração de robôs está sendo criada para ir a lugares onde nós, seres humanos, não conseguimos ir — ou até conseguimos, mas seria muito difícil sobreviver! São lugares como as planícies do Ártico, vulcões em atividade, as profundidades do oceano e planetas distantes. Vamos conhecer alguns?

 

Boaty: o drone submarino

O navio de pesquisa da marinha real britânica RRS David Attenborough vai partir em expedição para explorar o Ártico, mas ele não vai sozinho. Junto, uma série de drones autônomos capazes de voar e submergir, vão trabalhar para descobrir os mistérios das regiões polares.

Um dos drones submarinos que poderá estar a bordo é o Boaty McBoatface. Ele foi planejado para mergulhar a uma profundidade de até 6 mil metros, onde a pressão é 600 vezes maior do que ao nível do mar, nessas condições, robôs e drones menos preparados seriam completamente esmagados.

Boaty é equipado com sensores, equipamentos de filmagem, sonares (do inglês Sound Navigation and Ranging ou “Navegação e Determinação da Distância pelo Som”), microfones especiais e outros apetrechos de comunicação projetados para o uso embaixo da água. O seu objetivo é colher dados sobre as mudanças de temperatura no fundo do oceano e seu potencial impacto nas mudanças climáticas.

boaty

O robô submarino ultra resistente foi apelidado de Boaty McBoatface

Imagem: NATIONAL OCEANOGRAPHY CENTRE

 

Um grande desafio para os projetistas do Centro Nacional de Oceanografia do Reino Unido, foi construir uma máquina capaz de viajar longas distâncias sob o gelo sem precisar recarregar sua fonte de energia. Avanços tecnológicos em microprocessamento, alguns resultantes do desenvolvimento de tecnologia de smartphones, ajudaram nos estudos e permitiram reduzir a quantidade de energia que os drones precisam para funcionar.

Projetado para usar uma quantidade muito baixa de energia, o veículo viaja em uma velocidade relativamente baixa, mas que permite cobrir grandes distâncias e executar missões mais longas, onde os veículos anteriores não podiam chegar.

Em sua primeira expedição sob o gelo, no oeste da Antártida, Boaty passou um total de 51 horas submerso, viajando 108 quilômetros. Ele chegou a 944 metros de profundidade. Os sinais de GPS não chegam tão fundo, o que torna a navegação complicada.

Quando isso ocorre, o drone precisa usar a navegação estimada. A partir de um ponto de origem — como o próprio navio RRS David Attenborough — o robô pode estimar a direção e distância percorridas, calculando a velocidade por meio de um sonar.

Para explorar ainda mais longe e profundamente, novas tecnologias de navegação estão sendo desenvolvidas. Um novo sistema chamado Navegação Assistida de Terreno pode mapear o fundo do mar e repassar as informações para o computador do veículo. O objetivo, a longo prazo, é que os robôs sejam capazes de criar seus próprios mapas em tempo real. Isso ajudará, por exemplo, a completar uma missão sob o gelo atravessando o Ártico, um ambiente sobre o qual sabemos muito pouco.

 

Explorando planetas

A superfície de Marte é ainda mais desafiadora que as condições subaquáticas no polo norte. Para as profundezas vulcânicas do “planeta vermelho”, dois aparelhos estão sendo desenvolvidos pela Nasa.

lemur

O robô Lemur, da Nasa, consegue subir e descer penhascos

Imagem: NASA

Chamado de Lemur, uma das supermáquinas tem quatro membros mecânicos capazes de escalar paredes de pedra, graças a centenas de pequenos ganchos em cada um de seus 16 dedos. O Lemur foi levado por engenheiros dos laboratórios de propulsão a jato da Nasa para um campo de teste no Vale da Morte, na Califórnia. Lá, o aparelho usou inteligência artificial para escolher uma rota e subir um penhasco.

Segundo o pesquisador da Nasa, Aaron Parness, as habilidades do robô para subir rochas podem ser usadas para operações de busca e resgate e ajudar equipes de resposta a desastres.

O maior desafio até então, foi encontrar garras que não sofressem desgaste com o atrito na pedra. Entre as opções estavam titânio, aço, fibra de carbono, carbeto e ligas de aço, foram testados agulhas de costura, seringas, ferramentas de corte de metal e até espinhos de cactos. Entretanto, a solução encontrada foram anzóis de pesca — afiados, fortes e duráveis.

 

Calor extremo

O Volcanobot, também da Nasa, é um aparelho de custo relativamente baixo. Ele foi projetado para percorrer fissuras vulcânicas e sobreviver ao calor extremo. O Volcanobot já mapeou os caminhos de erupções antigas no Kilauea, no Havaí, para entender como esse tipo de vulcão funciona no subsolo.

rocha

Rocha vulcânica é um terreno difícil para humanos e robôs

Imagem: GETTY IMAGES

A tarefa de construir máquinas capazes de navegar terrenos hostis e lidar com temperaturas extremas é muito difícil, pois a rocha vulcânica é extremamente afiada e dura. O robô usa um material misturado com fibra de carbono em suas peças, impressas em 3D, para que elas seja mais resistentes à abrasão.

Sua “casca” criada pela equipe de projetistas consegue aguentar até 300°C, mas os aparelhos eletrônicos dentro do robô são muito mais frágeis — tendem a falhar entre 60°C e 80°C. Para isso, novas tecnologias estão sendo estudadas.

 

Combate a incêndio

A área de equipamentos pesados da Mitsubishi, no Japão, desenvolveu robôs automatizados para combater o fogo e sobreviver ao calor extremo. Equipados com GPS e sensores a laser, os “robôs canhão-de-água” conseguem se posicionar no local ideal para combater o incêndio e enviar um drone com a mangueira até a fonte de água.

robo-canhao

Os robôs bombeiros do Japão suportam calor extremo

Imagem: MITSUBISHI HEAVY INDUSTRIES

O robô bombeiro consegue fazer jorrar até 4 mil litros de água por minuto. Seu sistema passou pelo primeiro teste no Instituto Nacional de Pesquisa em Fogo e Desastre de Tóquio. Seus criadores preveem o uso do robô em situações extremamente instáveis, como incêndios petroquímicos.

É com o desenvolvimento da Ciência e Tecnologia que supermáquinas como essas podem ser criadas e nos ajudar com pesquisas, explorações e também salvando vidas. Se nós não podemos chegar em certos lugares, tudo bem ter uma ajudinha extra, né? ;)

MistériosJPG

6 mistérios que a física ainda não conseguiu explicar

Cientistas criaram teorias para entender e até tentar explicar alguns mistérios do universo, mas até hoje nada foi comprovado. Será que um dia teremos respostas para eles?

Assim como nós, os físicos, astrofísicos e cientistas estão cheios de perguntas. E, apesar dos avanços nestes campos, há mistérios que ainda são impossíveis de serem explicados. Para tentar entender certos fenômenos, foram estabelecidas teorias que, mesmo não podendo ser observadas ou comprovadas diretamente, são a única explicação para definir alguns enigmas do universo. Conheça a seguir alguns deles.

 

  1. A matéria escura

Cientistas calculam que 84% da matéria presente em nosso universo não emite e sequer absorve luz, a chamada matéria escura. Por não absorver nem emitir radiação, ela não pode ser vista diretamente, nem detectada de maneira indireta.

Eles acreditam na existência dessa matéria graças ao efeito gravitacional que exerce sobre outros elementos e sobre a estrutura do universo. Acredita-se que é composta por partículas massivas que interagem sem força entre elas e, por carecer de luz, os astrofísicos não conseguem detectá-la, apesar de saber que está ali.

materia escura

Matéria escura – Fonte: Superinteressante.

 

  1. A energia escura

Cientistas acreditam que há algo que contraria a força gravitacional de atração e, mesmo que a gravidade empurre tudo para o centro do nosso universo, ele continua em expansão.

A gravidade deveria evitar que isso acontecesse, mas na prática é diferente. Para explicar isso, sugere-se que exista uma energia invisível que se contrapõe à força da gravidade — a energia escura. Ela é tida como uma propriedade inerente do próprio espaço. À medida que o espaço se expande, mais espaço é criado e, consequentemente, mais energia escura.

Porém, também não é possível detectar a energia escura e os cientistas não conseguem comprovar sua existência, mas essa é a única explicação que existe até hoje. E mais: embora ninguém saiba como constatar, estima-se que 70% do universo é composto por energia escura!

 

  1. A inflação cósmica

A inflação cósmica é um conjunto de teorias concedida para explicar alguns enigmas que a teoria do Big Bang não podia responder. Diz-se que com a inflação cósmica, houve partes do universo que ficaram mais densas em matéria, e isso explicaria as galáxias e outros fenômenos.

Ao olharmos para o universo, observamos uma esfera que parece se estender por partes iguais em todas as direções. O que torna difícil a explicação de haver uma temperatura uniforme: como duas partes distantes do universo podem ter a mesma temperatura e densidade sem ter estado em contato? A inflação cósmica explica esse fenômeno.

A teoria sugere que essas partes chegaram a formar uma unidade e que, menos de um bilionésimo de segundo depois do Big Bang, o universo se inflou de forma repentina e em grande velocidade, expandido sua matéria a uma velocidade superior à da luz. Durante essa expansão, houve pequenas diferenças de temperaturas, pontos de maior densidade que se materializaram em galáxias e grupos de galáxias. Também foram produzidas as ondas gravitacionais previstas por Albert Einstein.

Apesar deste conhecimento, os físicos não podem atestar o que formou esses conjuntos de estrelas e ondas gravitacionais. Portanto, um fenômeno como a inflação cósmica pode fazer com que seja mais compreensível.

energia escuraA energia escura é uma pressão negativa que empurra o universo a expandir mais rápido. Fonte: Astrofísica para Todos.

  1. O destino do universo

“Para onde vamos?” Essa é uma das perguntas científicas que mais causam curiosidade e outras perguntas até hoje. Acredita-se que isso depende de um fator desconhecido que mede a densidade da matéria e a energia que existe no cosmos.

Considerando que esse fator é maior que a unidade, o universo seria uma esfera. Sem a energia escura mencionada antes, o universo deixaria de se expandir e tenderia a se contrair, provocando o colapso absoluto, num processo inverso ao Big Bang, conhecido também como Big Crunch. Mas, como essa energia existe, os cientistas acreditam que o universo seguirá se expandindo de maneira infinita.

Mas o universo se expandirá para sempre? Considerando-o como uma esfera e caso a energia escura exista de fato, esse universo esférico se expandirá eternamente.

De maneira alternativa, o universo pode ser curvo e aberto, como a superfície de uma sela para montar cavalos. Neste caso, o universo pode caminhar para dois processos — o Big Freeze e Big Rip. No primeiro, a aceleração do universo fará com que ele acabe desfazendo galáxias e estrelas, deixando matéria fria e abandonada. Depois, a aceleração aumentaria de maneira tão grande, que poderia superar a força que mantém os elementos de um átomo em seus devidos lugares, destruindo-o completamente.

Outra alternativa é que o universo pode ter uma estrutura planar, como uma mesa que se expande para todas as direções. Caso a energia escura não exista, neste modelo a aceleração da expansão do universo seria reduzida aos poucos, até parar completamente. Mas se a energia escura existir, tudo terminaria destruído com o Big Rip.

big ripSimulação do Big Rip. Fonte: Theweek.

 

  1. A entropia

Você sabia que alguns cientistas duvidam que o tempo tenha corrido sempre para a frente, mas não conseguem provar o contrário? Isso é explicado por uma propriedade da matéria chamada entropia, que é a quantidade de desordem de um sistema. Neste caso, das partículas do universo.

Basicamente, se o universo se desloca de uma baixa entropia para uma alta entropia, nunca poderemos ver os acontecimentos se reverterem. Esse movimento é irreversível, mas suscita um novo enigma para os cientistas: por que o universo era tão organizado em seu início? Se, como confirmado em outras teorias, havia uma grande quantidade de energia acumulada em um espaço tão reduzido, por que a entropia (a desordem) era tão baixa na origem do cosmos? Ainda não há resposta para isso.

 

  1. Os universos paralelos

Será que o universo em que vivemos é único? Até hoje, nada garante isso. Muitos cientistas defendem a hipótese de que é possível que o que chamamos de universo seja somente um entre outros infinitos espaços.

As leis da física quântica dizem que a configuração das partículas dentro de cada espaço é finita e que esta configuração deve, necessariamente, se repetir, o que implicaria em uma infinidade de universos paralelos. É daí que vem o conceito de multiverso, ou seja, diversos universos paralelos coexistindo sem que um tenha contato com o outro.

universos-paralelosUniversos paralelos. Fonte: Hypescience.

Da matéria escura aos universos paralelos: são tantos questionamentos! Que a ciência esteja sempre em evolução e que possamos presenciar a solução desses mistérios. <3

 

AntimateriaJPG

Antimatéria: história e curiosidades

Assim como o nome sugere, a antimatéria é o inverso da matéria. Mas o que isso quer dizer?

Assim como o nome sugere, a antimatéria é o inverso da matéria. Cada partícula elementar que conhecemos possui uma partícula oposta que apresenta exatamente as mesmas características, exceto a carga elétrica, que é inversa. O pósitron, por exemplo, é a antimatéria do elétron, portanto, possui a mesma massa, mesma rotação, mesmo tamanho, mas carga elétrica de sinal oposto.

materia-e-antimateria

Matéria e antimatéria, constituídas de antipartículas.

Tudo o que se sabe sobre essas antipartículas vem de experiências realizadas em aceleradores de partículas, que apresentam antipartículas como produto. Dentro desses imensos laboratórios, a dificuldade de produzir e analisar a antimatéria está no fato de que, no encontro da matéria com a antimatéria, sempre ocorre aniquilação, ou seja, uma destrói a outra, gerando uma grande quantidade de energia.

 

Descoberta

A história da antimatéria começa em 1928, quando o físico britânico Paul Andrien M. Dirac revisou a equação da equivalência entre massa e energia proposta por Einstein e propôs que as partículas podem ter valores negativos de energia. Ou seja: que um elétron poderia emitir radiação infinitamente, ficando cada vez com energias mais negativas, o que não é aceitável do ponto de vista físico. 

Para consertar esta inconsistência do seu modelo, Dirac argumenta que todos os estados relacionados a energias negativas estão ocupados, assim uma partícula não poderia ir para um estado de energia negativa, isto ficou conhecido como Mar de Dirac. Uma consequência do mar de Dirac é que o consideramos como vácuo não é vazio, existe uma infinidade de partículas nos estados de energia negativa.

Logo, para Dirac, uma antipartícula nada mais é do que um espaço vago no Mar de Dirac, assim um elétron pode perder energia emitindo radiação e indo pro estado quântico vago descrito pelo antielétron. Um observador veria um elétron colidindo com um antielétron, depois da colisão ambos desapareceriam e a energia seria emitida na forma de radiação.

Em 1932,  um ano após a previsão de Dirac, Carl Anderson detectou a presença de elétrons positivos durante um experimento com raios cósmicos. O antielétron detectado foi chamado de pósitron e tem as mesmas características do elétron, mas apresenta carga elétrica de sinal positivo. Em 1955, cientistas criaram o antipróton por meio de um acelerador de partículas. Desde então, os estudos relacionados com antimatéria vêm revelando antipartículas de nêutrons, quarks, léptons etc.

 

Como produzir antimatéria?

A antimatéria existe de maneira natural, porém em pequeníssimas quantidades. É o caso da banana, por exemplo, que emite um pósitron a cada 75 minutos, pois possui em sua composição química um isótopo radioativo de potássio (40K) que sofre decaimento β+, mas como o nosso universo é feito predominantemente de matéria, rapidamente este pósitron encontra um elétron e eles se aniquilam, sobrando somente radiação.

Hoje os cientistas são capazes de produzir antimatéria nos aceleradores de partículas, como o famoso LHC. Nessas máquinas de incrível complexidade, feixes de partículas e/ou antipartículas são lançados em anéis circulares ou retilíneos e são colididos com outros feixes. Essas colisões, quando feitas com energia suficiente, recriam as condições do universo no Big Bang. 

lhc10

LHC: o maior acelerador de partículas do mundo.

Ao acelerar átomos a altíssimas velocidades com um acelerador de partículas, elas podem ser colididas com um determinado alvo. As antipartículas resultam dessa colisão e são separadas pela ação de campos magnéticos. Em média, a cada 10.000 colisões de prótons é gerado um antipróton, é isto que torna a produção de antimatéria tão cara.

 

Antimatéria como fonte de energia

Ao pensar nas possíveis aplicações que podem surgir da pesquisa em antimatéria, podemos citá-la como uma fonte de energia compacta.

Já falamos que ao encontrar matéria, a antimatéria é aniquilada. Nesta aniquilação é liberada uma grande quantidade de energia. Quanta energia? Essa reação é o único processo que converte 100% da massa de uma partícula em energia, lembrando da famosa equação de Einstein, E=mc², tem muita energia armazenada na massa das partículas que normalmente não pode ser acessada.

A aniquilação de um grama de antimatéria com um grama de matéria resultaria na liberação de 50 GWh de energia, o suficiente para manter uma lâmpada de 100 W acesa por mais de 57 mil anos!

Essa energia pode ter uma aplicação valiosa para exploração espacial, pois uma boa parte do problema que temos ao lançar um foguete ao espaço é o combustível necessário para sair da atmosfera da Terra. Para isso acontecer ainda é preciso melhorar a eficiência da produção de antimatéria, baratear o processo, desenvolver novas tecnologias de armazenamento e aprender a controlar o uso desta energia, caso contrário teríamos apenas uma bomba poderosíssima! :O

Cobre

Condutor elétrico: a importância do cobre nas instalações elétricas

A principal razão para utilizar o cobre em sistemas elétricos é sua excelente condutividade elétrica.

Todo material que permite a passagem da corrente elétrica com grande facilidade — quando está submetido a uma diferença de potencial elétrico — é chamado de condutor. É o caso do cobre, graças às suas propriedades únicas, ele ajuda as instalações elétricas a se tornarem eficientes, duráveis e seguras.

Existem diversos materiais que podem ser utilizados como condutores elétricos. Mas, para se tornar um candidato sério para a posição, o material deve combinar condutividade muito alta com suas características mecânicas. É aí que entra o cobre, a principal razão para utilizá-lo em sistemas elétricos é sua excelente condutividade elétrica.

O cobre apresenta a resistência elétrica mais baixa entre todos os metais não-preciosos. Fios e cabos de cobre são capazes também de reduzir as perdas de energia e contribuir para a baixa de emissão de CO2. O metal possui grande resistência contra a deformação e a corrosão, o que aumenta a vida útil e a segurança dos produtos aplicados nas instalações elétricas.

A quantidade de eletricidade que utilizamos hoje em dia, exige que o cabeamento elétrico de nossos lares se encontre em ótimas condições, para evitar falhas e sobrecargas que possam provocar incêndios e lesões físicas. É por esses e outros motivos que o cobre está presente em dispositivos, como os disjuntores, fusíveis, hastes de aterramento, barramentos, interruptores e tomadas.

 

Características e aplicações

- O cobre é um metal muito utilizado para a construção de condutores elétricos, já que é muito dúctil e maleável.

- A eletricidade que flui por meio dos fios de cobre encontra muito menos resistência que encontraria em fios de alumínio ou aço, por exemplo. Além disso, além da prata, o cobre é melhor condutor elétrico que qualquer outro metal não precioso.

 

cobre-fotoAs peças da WEG também utilizam o cobre, como é o caso das bobinas. Foto: Acervo Museu WEG.

 

- O cobre caracteriza-se por apresentar uma grande capacidade de condução de corrente. Isto quer dizer que um cabo de cobre é menor que um de alumínio, considerando o mesmo índice de resistência. Um exemplo se dá ao comparar um condutor de alumínio e outro de cobre de uma mesma seção; este último tem uma capacidade 28% superior ao do primeiro. Igualmente, as perdas por Efeito Joule são 58% menor em relação ao alumínio.

- Os condutores de cobre garantem a eliminação de prováveis falhas causadas por maus contatos devido ao óxido que se forma no condutor, como o que poderia ocorrer ao alumínio. Além disso, dão maior facilidade no uso de soldas nos terminais e emendas.

- Durante uma instalação ou qualquer tipo de trabalho, os condutores sofrem inevitáveis dobramentos; quanto a isto os condutores de cobre são mais resistentes. É uma grande vantagem para eles já que podem dobrar e passar com mais facilidade pelos condutos sem medo de que se quebrem.

- Outra característica é que os cabos de cobre são menos volumosos, o que faz com que seu transporte e instalação sejam mais fáceis.

- Sua vida útil é muito mais longa que outros tipos de cabos. Por isto, a longo prazo, cabos de cobre são mais econômicos.

- Outra vantagem do cobre é sua alta resistência à corrosão, por isso também é aplicado em instalações subterrâneas e em linhas aéreas em regiões costeiras ou de alta poluição.

E aí? Gostou de saber mais sobre esse material tão importante para a história da WEG? Venha conhecer aplicações práticas! A entrada no Museu é gratuita. =)