Categoria: Magnetismo

Aurora

O magnetismo terrestre e as auroras boreais

Existem auroras boreais de diversas cores, que dependem do tipo de gás ou molécula que participou dessa interação com os elétrons provenientes dos ventos solares.

Você já ouviu falar sobre a aurora boreal? Trata-se de um fenômeno óptico que colore os céus nas regiões polares. As auroras boreais são consequência da ação de partículas solares sobre a nossa magnetosfera, elas aparecem quando os ventos solares entram em contato com o campo magnético terrestre. 

O campo magnético terrestre

Embora não possamos ver, o campo magnético terrestre está ao redor da Terra, funcionando para nós como uma “bolha de proteção”. Seu papel principal é bloquear o fluxo constante de radiação cósmica sobre a Terra, impedindo a entrada de partículas, carregadas e superaquecidas, que se chocam a 1,6 milhões km/h e são altamente nocivas, ou seja, o campo magnético é fundamental para a existência da vida terrestre.

campo mag

O campo magnético nos protege contra partículas vindas do Sol

Os cientistas estimam que, numa profundidade entre 2.800 e 4.800 km abaixo da crosta, há uma camada de fluído, constituída principalmente por ferro. Com o movimento de rotação do planeta, este fluído também roda. Como a parte mais externa do globo é constituída por rochas, há um atrito entre as duas camadas, fazendo com que o fluído gire, formando espirais.  As correntes circulares que se formam neste processo se comportam como os fios de um dínamo, gerando um campo magnético que consegue alcançar altitudes além da ionosfera – a camada superior da atmosfera.

É nessa movimentação que a Terra se transforma, todos os dias, em um imenso ímã. Graças a esse fenômeno, é possível utilizar bússolas magnéticas, por exemplo.


Aurora Boreal

O nome aurora boreal foi dado pelo astrônomo Galileu Galilei em homenagem à Aurora, deusa romana do amanhecer, e seu filho, deus grego do vento forte, Bóreas.

As auroras polares ocorrem somente nas áreas de elevada latitude em razão da força do campo magnético da Terra. O que acontece é que os ventos solares carregados de elétrons movem-se a cerca de 1,6 milhões de km/h e, quando chegam ao nosso planeta, acabam sendo facilmente guiados pela força magnética gerada pelo núcleo terrestre, seguindo para as áreas polares. Nesse momento, parte do vento solar é captada pela ionosfera, sendo conduzida e acelerada em uma espécie de “túnel magnético” que se forma, o que ocasiona a geração dos efeitos de luzes quando há uma interação desse vento solar eletricamente carregado com os gases atmosféricos.

aurora2aurora1

As auroras boreais podem ter diversas cores e formatos

Existem auroras boreais de diversas cores, que dependem do tipo de gás ou molécula que participou dessa interação com os elétrons provenientes dos ventos solares. O oxigênio, a depender da altitude em que o fenômeno acontece, pode gerar auroras boreais verdes ou vermelhas; já o nitrogênio, também a depender da altitude, poderá gerar auroras azuis, púrpuras ou violetas. Muitas vezes, surgem várias cores ao mesmo tempo. Elas também podem ter vários formatos, tais como: pontos luminosos, faixas no sentido horizontal ou circular.

O fenômeno costuma ser um grande atrativo turístico, um evento natural procurado por milhares de pessoas todos os anos. O local do mundo mais visitado para apreciar o belíssimo espetáculo natural é a cidade de Lapônia, na Finlândia, geralmente nos meses de setembro e outubro e também em fevereiro e março, períodos do ano em que é mais provável a manifestação das auroras boreais.

Motor-homopolar

Motor elétrico homopolar: o mais simples do mundo

O motor homopolar tem um funcionamento muito simples, é fácil de construir e uma ótima opção para comprovar os princípios do eletromagnetismo.

Para falar sobre o motor elétrico homopolar e aprender como fazer um em casa, precisamos voltar no tempo e lembrar de alguns detalhes da história do motor elétrico. Vamos lá?

Os fenômenos relacionados à eletricidade e ao magnetismo eram observados e estudados desde muito tempo, na Grécia Antiga. Os primeiros registros datam do séculos 6 a.C por Tales de Mileto. Mas foi somente a partir do século XVI que novas pesquisas foram desenvolvidas nessa área, porém, sem que ninguém conseguisse estabelecer uma ligação entre os fenômenos elétricos e magnéticos.

Com as experiências realizadas pelo professor dinamarquês Christian Oersted, já no começo do século XIX, esse panorama começou a mudar. Durante uma de suas aulas, o pesquisador demonstrava aos seus alunos como se dava o aquecimento de um fio condutor durante a passagem de uma corrente elétrica. Ao lado do seu experimento, havia uma bússola. Quando o professor liberou a passagem da corrente elétrica pelo fio, reparou que a agulha da bússola desviou-se de sua posição natural.

Por se tratar de um ímã alinhado ao campo magnético da Terra, a mudança na posição da agulha só poderia ocorrer com a presença de outro campo mais intenso. Assim, mais tarde, Oersted verificou que o movimento da agulha dependia da posição da bússola em relação ao fio pelo qual passava a corrente elétrica. Essas observações representaram um grande avanço científico, ajudando o professor a demonstrar que a corrente elétrica em um condutor está diretamente relacionada a um campo magnético que se cria ao seu redor, fazendo com que o condutor funcione como um ímã.

Anos mais tarde, o cientista inglês Michael Faraday trabalhava em pesquisas que consideravam a possibilidade de gerar eletricidade a partir de campos magnéticos, ou seja, o oposto ao experimento realizado por Oersted. O pesquisador descobriu então que uma corrente elétrica era gerada no momento que se posicionava um ímã no interior de uma bobina feita com fios condutores.

Michael Faraday, British physicist

Michael Faraday (1791-1867)

Foi assim que Faraday provou que a variação de um campo magnético é capaz de criar uma corrente elétrica em um fio condutor, mesmo sem estar conectado a nenhuma fonte de energia. Ele deduziu que se houvesse um movimento da bobina em relação ao ímã, seria possível obter uma corrente elétrica contínua, efeito que ficou conhecido como indução eletromagnética. Esse é o princípio básico do funcionamento de geradores e motores elétricos até hoje.

As descobertas de Oersted e Faraday tiveram grande impacto nos avanços tecnológicos desde então. Os princípios do eletromagnetismo são a base de grande parte da tecnologia mecânica e eletroeletrônica que conhecemos, de secadores de cabelos até os sistemas de telecomunicações.

 

Motor Elétrico Homopolar

Para realizar seus estudos e comprovar os resultados, Faraday construiu um dispositivo com o objetivo de mostrar o efeito magnético circular ao redor de um fio condutor, a que ele chamava de rotação eletromagnética. Esse aparelho ficou conhecido como Motor de Faraday e foi o primeiro motor elétrico construído.

Esse dispositivo criado por Faraday também é conhecido como motor homopolar. Essa denominação se dá pois não há nenhuma alteração na polaridade dos seus componentes durante seu funcionamento. Ao se fechar o circuito, o campo magnético do ímã exerce uma força sobre as cargas elétricas do material condutor, gerando uma corrente elétrica. Esse é o princípio do funcionamento dos motores elétricos.

 

Construindo um motor homopolar

O motor homopolar proposto por Faraday tem um funcionamento muito simples, é fácil de construir e uma ótima opção para comprovar os princípios do eletromagnetismo, mesmo tendo pouca utilidade na prática hoje em dia.

Pensando nisso, trouxemos um vídeo que mostra a construção de um motor elétrico homopolar, que você pode fazer em casa, na escola ou universidade.

Eis o motor mais simples do mundo em pleno funcionamento!

Galileo

Galileo Ferraris e o campo magnético girante

Galileo Ferraris foi um físico e engenheiro eletricista italiano, seus estudos contribuíram para a história do motor elétrico.

Galileo Ferraris foi um físico e engenheiro eletricista italiano, seus estudos contribuíram para a história do motor elétrico. Isto porque descobriu de maneira independente o campo magnético girante, um princípio de funcionamento básico do motor de indução. Além disso, foi professor, durante mais de vinte anos, de Física Tecnológica, na escola de engenheiros de Turim, e também fundador da primeira Escola Superior de Eletrotecnia, na Itália, em 1886.

Foi durante a Exposição Internacional de Eletricidade de Turim em 1984, onde foi júri internacional, que examinou uma nova invenção – o transformador (“gerador secundário”). Iniciou seu trabalho de divulgação e investigação teórico-experimental sobre os problemas da aplicação dessa máquina elétrica estática. Tendo percebido a importância que a corrente alternada iria ter devido à utilização do transformador, realizou no seu laboratório um conjunto de experiências que fundamentaram o conceito de campo magnético girante, em 1985.

 

synchronous-motor_03a

Campo magnético girante trifásico.

O campo girante é um campo magnético rotativo usado em máquinas elétricas. A maneira mais simples de obter um campo girante é usar um ímã ou eletroimã e fazê-lo rodar por qualquer processo.

Galileo Ferraris preocupou-se com o problema da diferença de fase entre a intensidade de corrente elétrica primária  e secundária. Surgiu, então, um fenômeno que se relacionou com seus estudos sobre Óptica. Como, naquela época a luz era considerada uma vibração do éter, e da combinação de duas vibrações em quadratura de fase resultava uma vibração circular (luz polarizada), Galileo Farraris encontrou a forma de combinar dois campos magnéticos em quadratura de fase para obter um campo magnético girante — campo magnético criado por uma estrutura estática, mas com os pólos rodando no espaço em torno de um eixo, com uma velocidade constante.

Conseguiu realizar o campo magnético girante (elíptico ou circular) com a composição de dois campos magnéticos alternados, criados por bobinas fixas colocadas em quadratura no espaço, sendo cada uma percorrida por uma corrente elétrica alternada. 

Só em 1888 comunicou sua experiência à Academia de Ciências de Turim, onde refere-se às formas laboratoriais de obter duas correntes elétricas alternadas enfasadas entre si, a descrição de dois aparelhos eletromecânicos que mandou construir e as considerações que as experiências efetuadas resultaram em uma nova forma de converter energia elétrica em mecânica.

Seus estudos foram muito importantes para a aplicação em diversas tarefas, como a distribuição de energia em corrente alternada (divulgação do transformador) e transformação imediata dessa forma de energia em energia mecânica (motor do campo girante). Galileo Ferraris deu evolução a eletrotécnica, suas descobertas, fundamentais para a época, continuam contribuindo para a ciência e tecnologia atuais.

feira_brasileira_de_iniciacao_cientifica

Museu WEG na Feira Brasileira de Iniciação Científica

Neste mês, acontece em Jaraguá do Sul a Feira Brasileira de Iniciação Científica para estudantes.

A 4ª edição da FEBIC — Feira Brasileira de Iniciação Científica — acontece neste mês em Jaraguá do Sul, a feira é conhecida por ser um espaço para estudantes apresentarem ideias criativas e inovadoras na forma de projetos científicos, onde possam experimentar o fazer ciências e realizar pesquisas.

 É, ainda, um rico ambiente de fomento, integração, mostra de trabalhos, inventos, empreendedorismo e troca de experiências, que aproxima estudantes e professores, e representa mais uma ação de incentivo ao desenvolvimento e divulgação de conhecimentos científicos entre unidades de ensino, comunidade e empresas.

O objetivo da FEBIC é promover a cultura científica, a experimentação, a disseminação e a popularização do conhecimento científico; instigar a criatividade, a inovação e o uso de novas tecnologias, de forma sustentável e inteligente. Promover, na busca da solução de problemas cotidianos, o pensar criativo e inovador, o conhecimento, a utilização de novas tecnologias, a sustentabilidade e a percepção crítica do uso/preservação que se faz do meio ambiente.

No ano passado, a III FEBIC teve mais de 130 projetos participantes e, entre as atividades paralelas, no “Espaço Discutindo Ciência”, o Museu WEG foi sede da palestra “Eficiência Energética”.

 

IV FEBIC – edição 2019

Neste ano a previsão é a exposição de 250 trabalhos nas categorias Educação Infantil ao Ensino Médio, Profissionalizante, Técnico e Educação de Jovens e Adultos), além das Comunicações Orais (Estudantes/Pesquisadores de EJA, Ensino Superior e Pós-Graduações) e a área da Engenhoteca.

Os melhores trabalhos apresentados durante a IV FEBIC, avaliados por especialistas nas respectivas áreas serão premiados com troféus e medalhas, Prêmios de Destaques e Excelência, além de dezenas de credenciais de Feiras Nacionais e Internacionais.

A IV FEBIC acontecerá de 09 a 13 de setembro de 2019 na Arena Jaraguá (Rua Gustavo Hagendorn, 636 – Nova Brasília). As cerimônias de abertura e premiação acontecerão no Parque Municipal de Eventos (Rua Walter Marquardt, 910 – Barra do Rio Molha).

Quem visitar a Feira também poderá encontrar o estande do Museu WEG, onde estaremos apresentando soluções e tecnologias em Tintas, aguardamos sua visita!

Sua participação é importante para todos os envolvidos: voluntários, estudantes/pesquisadores, orientadores e inventores. Visite e ajude a incentivar a Pesquisa, a Educação e as Ciências no Brasil! =)

aniversario_museu_weg

Museu WEG promove visita à WEG Automação para falar sobre Profissões do Futuro e Indústria 4.0

O Museu WEG de Ciência e Tecnologia completa 16 anos e vai comemorar compartilhando história e conhecimento.

Neste mês o Museu WEG de Ciência e Tecnologia completa 16 anos e, não há melhor jeito de comemorar senão compartilhando história e conhecimento. Pensando nisso, o Museu preparou uma atividade gratuita para a comunidade, desta vez, a ação é direcionada para estudantes de cursos técnicos e superiores da microrregião.

Há 16 anos o Museu WEG tem o papel primordial de preservar a história da WEG, de seus fundadores e dos processos que a norteiam através da conservação de seus acervos, bem como, oferecer espaço educativo para a sociedade dentro de sua temática. Neste ano não será diferente.

Atualmente, vivemos em constante mudança — a era da Quarta Revolução Industrial. E, assim como as demais revoluções na história da humanidade, que transformaram drasticamente a forma de viver a partir de um novo modelo produtivo, a chamada Indústria 4.0 ou Indústria Inteligente promete mudar a forma como vivemos, trabalhamos e nos relacionamos. Desta mesma maneira, as profissões, os processos e produtos da WEG também estão mudando.

Pensando nessas mudanças e para tratar desse assunto tão relevante para o mercado de trabalho e a indústria, oferecemos para estudantes de escolas técnicas e superiores uma visita à WEG Automação, onde atuam diversos robôs. Aproveite para fazer sua inscrição!

 

aniversario_museu_weg_02

Robôs atuam na WEG Automação

No dia 16 de setembro os grupos irão participar de um bate papo com a área de recrutamento da WEG, onde será explanado o tema “Profissões do Futuro”. Após a conversa, acontece a visita à WEG Automação no parque Fabril II, onde os participantes vão conhecer a influência dos robôs e da automação na indústria 4.0. A participação e o transporte com saída e volta ao Museu são gratuitos.

 

Data: 16 de setembro
Horários: 8h às 11h30 e 13h às 16h30
Público: estudantes de escolas técnicas e superiores
Inscrições: https://museuweg.net/contato/agendamento
Dúvidas: 3276-4550

 

 

UsinasJPG

Como funcionam as usinas nucleares?

O Brasil possui um elemento radioativo em abundância: o urânio. Ele é capaz de gerar uma enorme quantidade de energia através das usinas nucleares. Você sabe como isso funciona?

O sol é a maior fonte de energia em nosso planeta, e sua força vem dos átomos. A ciência nos deu a chave para controlar toda essa energia e sua matéria prima é o urânio, matéria em abundância em nosso país. Alguns átomos de urânio são capazes de liberar tanta energia, que  uma pequena pastilha pode gerar eletricidade suficiente para abastecer uma casa por um ano. 

O urânio é um elemento radioativo, ele é o átomo com o núcleo mais pesado que existe naturalmente na Terra. E é em usinas nucleares que ele é manipulado para produzir energia elétrica.

Uma usina nuclear é uma instalação industrial que produz energia elétrica a partir de reações nucleares. As reações nucleares de elementos radioativos, como o urânio, produzem uma grande quantidade de energia térmica. Essas grandes instalações são construídas envolvidas por uma contenção feita de ferro armado, concreto e aço, tudo isso para proteger o reator nuclear de emitir radiações para o meio ambiente.

No vídeo abaixo você poderá entender, de forma resumida, como funciona o processo de reação nuclear — da transformação de átomos em combustível para as usinas até a distribuição de energia.

Basicamente, uma usina nuclear é composta por três fases: a primária, a secundária e a refrigeração. Na primária, o urânio é colocado no vaso de pressão. Com a fissão (quebra do núcleo de um átomo instável em dois núcleos menores), há a produção de energia térmica. Nesta etapa, a água é utilizada para resfriar o núcleo do reator nuclear.

Na etapa secundária, a água que foi aquecida no sistema primário (agora radioativa) é transformada em vapor de água em um sistema chamado gerador de vapor. O vapor produzido no sistema secundário é utilizado para movimentar a turbina de um gerador elétrico, o que irá produzir a energia.

Em seguida, o vapor de água produzido no sistema secundário é transformado em água através de um sistema de condensação, ou seja, através de um condensador que é resfriado por um sistema de refrigeração de água. Esse sistema bombeia água do mar (fria), através de circuitos de resfriamento que ficam dentro do condensador, a água do mar vai resfriar o sistema para fazer com que a água que foi vaporizada volte para o sistema na forma líquida.

Por fim, a energia que é gerada através deste processo de fissão nuclear chega às residências por meio das redes de distribuição de energia elétrica. Veja abaixo a esquemática:

usinas-esquema

Esquemática de uma Usina Nuclear

 

Existem usinas nucleares no Brasil?

Sim! Elas estão localizadas na Central Nuclear em Angra dos Reis, no Rio de Janeiro. As usinas chamadas de Angra 1 e Angra 2, são responsáveis pela produção de 3% da energia consumida no país. Uma terceira usina está sendo construída, mas está longe da conclusão.

Por ser um país tropical e ter uma imensidade de rios formando grandes bacias hidrográficas, o Brasil tem diversas fontes de energia, como solar, eólica, hidrelétrica, das marés, do etanol, da biomassa, etc. O uso da energia nuclear vem da necessidade de diversificar a matriz energética brasileira – mesmo que o custo da energia nuclear não seja barato. Leia mais sobre a matriz energética brasileira clicando aqui. =)

Cobre

Condutor elétrico: a importância do cobre nas instalações elétricas

A principal razão para utilizar o cobre em sistemas elétricos é sua excelente condutividade elétrica.

Todo material que permite a passagem da corrente elétrica com grande facilidade — quando está submetido a uma diferença de potencial elétrico — é chamado de condutor. É o caso do cobre, graças às suas propriedades únicas, ele ajuda as instalações elétricas a se tornarem eficientes, duráveis e seguras.

Existem diversos materiais que podem ser utilizados como condutores elétricos. Mas, para se tornar um candidato sério para a posição, o material deve combinar condutividade muito alta com suas características mecânicas. É aí que entra o cobre, a principal razão para utilizá-lo em sistemas elétricos é sua excelente condutividade elétrica.

O cobre apresenta a resistência elétrica mais baixa entre todos os metais não-preciosos. Fios e cabos de cobre são capazes também de reduzir as perdas de energia e contribuir para a baixa de emissão de CO2. O metal possui grande resistência contra a deformação e a corrosão, o que aumenta a vida útil e a segurança dos produtos aplicados nas instalações elétricas.

A quantidade de eletricidade que utilizamos hoje em dia, exige que o cabeamento elétrico de nossos lares se encontre em ótimas condições, para evitar falhas e sobrecargas que possam provocar incêndios e lesões físicas. É por esses e outros motivos que o cobre está presente em dispositivos, como os disjuntores, fusíveis, hastes de aterramento, barramentos, interruptores e tomadas.

 

Características e aplicações

- O cobre é um metal muito utilizado para a construção de condutores elétricos, já que é muito dúctil e maleável.

- A eletricidade que flui por meio dos fios de cobre encontra muito menos resistência que encontraria em fios de alumínio ou aço, por exemplo. Além disso, além da prata, o cobre é melhor condutor elétrico que qualquer outro metal não precioso.

 

cobre-fotoAs peças da WEG também utilizam o cobre, como é o caso das bobinas. Foto: Acervo Museu WEG.

 

- O cobre caracteriza-se por apresentar uma grande capacidade de condução de corrente. Isto quer dizer que um cabo de cobre é menor que um de alumínio, considerando o mesmo índice de resistência. Um exemplo se dá ao comparar um condutor de alumínio e outro de cobre de uma mesma seção; este último tem uma capacidade 28% superior ao do primeiro. Igualmente, as perdas por Efeito Joule são 58% menor em relação ao alumínio.

- Os condutores de cobre garantem a eliminação de prováveis falhas causadas por maus contatos devido ao óxido que se forma no condutor, como o que poderia ocorrer ao alumínio. Além disso, dão maior facilidade no uso de soldas nos terminais e emendas.

- Durante uma instalação ou qualquer tipo de trabalho, os condutores sofrem inevitáveis dobramentos; quanto a isto os condutores de cobre são mais resistentes. É uma grande vantagem para eles já que podem dobrar e passar com mais facilidade pelos condutos sem medo de que se quebrem.

- Outra característica é que os cabos de cobre são menos volumosos, o que faz com que seu transporte e instalação sejam mais fáceis.

- Sua vida útil é muito mais longa que outros tipos de cabos. Por isto, a longo prazo, cabos de cobre são mais econômicos.

- Outra vantagem do cobre é sua alta resistência à corrosão, por isso também é aplicado em instalações subterrâneas e em linhas aéreas em regiões costeiras ou de alta poluição.

E aí? Gostou de saber mais sobre esse material tão importante para a história da WEG? Venha conhecer aplicações práticas! A entrada no Museu é gratuita. =)

 

Terra

O que aconteceria se, de repente, a Terra parasse de girar?

Se a Terra parasse de girar de repente, tudo o que se encontra na superfície terrestre seria arrancado violentamente daqui: pessoas, árvores, animais, cidades, oceanos e até mesmo o ar da atmosfera.

Tudo sairia voando!

Se a Terra parasse de girar de repente, tudo o que se encontra na superfície terrestre seria arrancado violentamente daqui: pessoas, árvores, animais, cidades, oceanos e até mesmo o ar da atmosfera. Tudo o que se encontra na superfície terrestre sairia voando! Tudo por causa da inércia dos corpos, já que tudo que existe na Terra, inclusive o ar, gira junto com o planeta.  

Agora imagine que a Terra completa sua rotação a cada 24 horas a uma velocidade de aproximadamente 1.700 quilômetros por hora! Se a freada brusca de um ônibus faz com que os passageiros sejam jogados para a frente, imagine o que não aconteceria com os habitantes da Terra?

Explicando de maneira simples: imagine um ônibus em alta velocidade freando de repente. A inércia faz com que todos os passageiros vão para frente, podendo até mesmo serem arremessados. Ou seja: se você estiver dentro de um ambiente fechado, as notícias não são lá muito boas.

Os corpos seriam arrancados da superfície e em seguida cairiam, pois mesmo os 1.700 quilômetros por hora, não são suficientes para fazer com que os corpos escapem do campo gravitacional e se percam no espaço. Então todos os destroços sólidos, os oceanos e a atmosfera cairiam de volta.

 

earth-1990298_960_720Tudo o que se encontra sobre a superfície terrestre seria arrancado violentamente.

 

O acontecimento geraria fissuras e pontos de tensão na crosta, o que causaria grandes derramamentos de magma e os maiores terremotos já vistos. Os oceanos continuariam a se mover a quase 1.700 quilômetros por hora no equador, gerando a maior onda e o maior tsunami já registrados na história. A atmosfera continuaria a se mover com a mesma velocidade da rotação da Terra, o que causaria ventos até 6 vezes mais fortes que os furacões de categoria 5. Esses ventos estariam tão rápidos que fariam os objetos parados em relação a eles quebrarem a barreira do som.

Agora, imagine que alguém sobreviva a esse voo em velocidade supersônica! Seria quase impossível sobreviver, a Terra continuaria sua trajetória ao redor do Sol, mas a falta de rotação acabaria com o conceito de dia e noite, seriam seis meses exposição solar — um deserto com temperaturas altíssimas — e seis meses de escuridão — tão frio que crostas de gelo seriam formadas rapidamente. A diferença térmica entre os dois lados provocaria ventanias terríveis.

Outra possível consequência dessa catástrofe, seria a perda de nosso campo magnético. Ou seja: a Terra ficaria sem proteção contra as partículas de altas energias provenientes do vento solar. Que medo!

buraco negro

Buraco negro: Parece que Einstein acertou mais uma vez

A primeira imagem de um buraco negro representa um marco histórico para a astrofísica, mas também serve para confirmar e validar a teoria geral da relatividade do renomado físico Albert Einstein.

Estima-se que os buracos negros sejam fenômenos cósmicos que se originam quando uma estrela entra em colapso. O restante de sua matéria fica limitado a uma pequena região, que logo dá lugar a um imenso campo gravitacional, levantando algumas das questões mais complexas sobre a natureza do espaço e do tempo e, agora, até mesmo sobre nossa existência.

A primeira imagem de um buraco negro representa um marco histórico para a astrofísica, mas também serve para confirmar e validar a teoria geral da relatividade do renomado físico Albert Einstein, agora os buracos negros são reais, não mais uma simulação de cálculos teóricos.

Na imagem, registrada de 05 a 11 de abril de 2018, o buraco negro parece um anel laranja em torno de uma silhueta redonda escura, na qual os astrônomos reconheceram o buraco negro na galáxia batizada de M87, e, para ter ideia da sua dimensão, ele é maior que o tamanho de nosso Sistema Solar inteiro. Ele não se localiza exatamente no centro da galáxia, mas a 22 anos-luz na lateral — o que facilitou o reconhecimento, o buraco negro tem 40 bilhões de quilômetros de diâmetro – cerca de 3 milhões de vezes o tamanho de nosso planeta – e é descrito pelos cientistas como um “monstro”.

 

passioneastronomia_56584409_879642212382166_5987380464980334360_n

Simulação / expectativa /  imagem real (@thelionlaw)

 

Nenhum telescópio, sozinho, seria poderoso o suficiente para visualizar o buraco negro.

Assim, o professor Sheperd Doeleman, do Centro de Astrofísica Harvard-Smithsonian, liderou um projeto para montar uma rede de oito telescópios interligados. Juntos, eles formam o Telescópio Event Horizon e podem ser considerados como uma variedade de pratos do tamanho de um planeta.

Cada um está localizado no alto de uma variedade de locais exóticos, incluindo vulcões no Havaí e no México, montanhas no Arizona e na Sierra Nevada espanhola, no deserto do Atacama no Chile e na Antártida. Uma equipe de 200 cientistas apontou os telescópios em rede em direção à M87 e examinou seu coração durante um período de 10 dias.

A primeira imagem de um buraco negro coincide com os simulações baseadas nas equações de Einstein, que previam um anel brilhante no entorno de uma forma escura. Nessa simulação, a luz seria produzida por partículas de gás e poeira aceleradas em alta velocidade e destruídas pouco antes de desaparecer no buraco. A área escura seria a sombra que o buraco lança nesse turbilhão.

Esta imagem permitirá novos estudos, ninguém ainda sabe como o anel luminoso é realmente criado, e muito menos o que acontece quando um objeto entra no buraco negro. Cientistas acreditam que existam explicações mais complexas para a gravidade ainda não descobertas, nem mesmo por Einstein, e é no buraco negro que, provavelmente, essas limitações devem ser expostas.

Outra curiosidade é que a luz é mais brilhante do que todas as bilhões de outras estrelas da galáxia combinadas – e é por isso que ela pode ser vista da Terra. A borda do círculo visto na imagem é o ponto no qual o gás entra no buraco negro, do qual nem mesmo a luz pode escapar. É o ponto em que todas as leis da física são quebradas.


Fontes:

BBC | El Pais

360

Aceleradores de partículas são laboratórios gigantes. Por fora, parecem grandes túneis, que podem ser retos ou em forma de anel e ter vários quilômetros de extensão. Dentro deles, as partículas que compõem os átomos – como prótons e elétrons – são aceleradas a velocidades próximas à da luz para que elas possam bombardear núcleos atômicos estáveis. Se você quer saber um pouco mais, leia o artigo que escrevemos sobre os aceleradores de partículas e o que eles fazem. Mas depois volta pra cá, ok?

No ano de 2008, o mundo inteiro voltou a sua atenção para o maior acelerador de partículas do mundo, o LHC. O gigante de 27 km de circunferência e 8,6 km de diâmetro tenta usar a tecnologia para recriar um ambiente semelhante ao do início do Universo. Com ele, a ciência já detectou o bóson de Higs – a partícula sub-atômica que confere massa a quarks e elétrons (sem ele, não seriam formados os átomos, e o Universo seria só um monte de partículas flutuando por aí).

É bem difícil imaginar a dimensão e a importância disso tudo. A boa notícia é que o canal britânico de televisão BCC produziu um vídeo em 360 graus dentro do acelerador e você pode dar uma voltinha em um dos lugares mais importantes para a ciência moderna!

O vídeo de cerca de três minutos explica algumas características do acelerador, em inglês, mas mesmo para quem não entende a língua, o passeio pelas instalações é bem simples: basta clicar no vídeo e utilizar o mouse para arrastar e virar para o lado que desejar. Você também pode usar as setas para girar a câmera. Aproveite o passeio!

Se assim como nós, você também fica fascinado com essas estruturas, vai adorar conhecer histórias e saber como é trabalhar dentro de um acelerador. Isto, porque já entrevistamos brasileiros que trabalham em aceleradores de partículas pelo mundo, vem ler:

 

 – Conheça o jaraguaense que trabalha com aceleradores de partículas na Suécia.

- O brasileiro que está há 17 anos trabalhando com aceleradores na Suíça.