Categoria: Ciência

UsinasJPG

Como funcionam as usinas nucleares?

O Brasil possui um elemento radioativo em abundância: o urânio. Ele é capaz de gerar uma enorme quantidade de energia através das usinas nucleares. Você sabe como isso funciona?

O sol é a maior fonte de energia em nosso planeta, e sua força vem dos átomos. A ciência nos deu a chave para controlar toda essa energia e sua matéria prima é o urânio, matéria em abundância em nosso país. Alguns átomos de urânio são capazes de liberar tanta energia, que  uma pequena pastilha pode gerar eletricidade suficiente para abastecer uma casa por um ano. 

O urânio é um elemento radioativo, ele é o átomo com o núcleo mais pesado que existe naturalmente na Terra. E é em usinas nucleares que ele é manipulado para produzir energia elétrica.

Uma usina nuclear é uma instalação industrial que produz energia elétrica a partir de reações nucleares. As reações nucleares de elementos radioativos, como o urânio, produzem uma grande quantidade de energia térmica. Essas grandes instalações são construídas envolvidas por uma contenção feita de ferro armado, concreto e aço, tudo isso para proteger o reator nuclear de emitir radiações para o meio ambiente.

No vídeo abaixo você poderá entender, de forma resumida, como funciona o processo de reação nuclear — da transformação de átomos em combustível para as usinas até a distribuição de energia.

Basicamente, uma usina nuclear é composta por três fases: a primária, a secundária e a refrigeração. Na primária, o urânio é colocado no vaso de pressão. Com a fissão (quebra do núcleo de um átomo instável em dois núcleos menores), há a produção de energia térmica. Nesta etapa, a água é utilizada para resfriar o núcleo do reator nuclear.

Na etapa secundária, a água que foi aquecida no sistema primário (agora radioativa) é transformada em vapor de água em um sistema chamado gerador de vapor. O vapor produzido no sistema secundário é utilizado para movimentar a turbina de um gerador elétrico, o que irá produzir a energia.

Em seguida, o vapor de água produzido no sistema secundário é transformado em água através de um sistema de condensação, ou seja, através de um condensador que é resfriado por um sistema de refrigeração de água. Esse sistema bombeia água do mar (fria), através de circuitos de resfriamento que ficam dentro do condensador, a água do mar vai resfriar o sistema para fazer com que a água que foi vaporizada volte para o sistema na forma líquida.

Por fim, a energia que é gerada através deste processo de fissão nuclear chega às residências por meio das redes de distribuição de energia elétrica. Veja abaixo a esquemática:

usinas-esquema

Esquemática de uma Usina Nuclear

 

Existem usinas nucleares no Brasil?

Sim! Elas estão localizadas na Central Nuclear em Angra dos Reis, no Rio de Janeiro. As usinas chamadas de Angra 1 e Angra 2, são responsáveis pela produção de 3% da energia consumida no país. Uma terceira usina está sendo construída, mas está longe da conclusão.

Por ser um país tropical e ter uma imensidade de rios formando grandes bacias hidrográficas, o Brasil tem diversas fontes de energia, como solar, eólica, hidrelétrica, das marés, do etanol, da biomassa, etc. O uso da energia nuclear vem da necessidade de diversificar a matriz energética brasileira – mesmo que o custo da energia nuclear não seja barato. Leia mais sobre a matriz energética brasileira clicando aqui. =)

RobôsJPG

Os robôs que vão a lugares que os seres humanos não conseguem ir

Uma nova geração de robôs está sendo criada para ir a lugares onde nós, seres humanos, não conseguimos ir — ou até conseguimos, mas seria muito difícil sobreviver! Vamos conhecê-los?

Uma nova geração de robôs está sendo criada para ir a lugares onde nós, seres humanos, não conseguimos ir — ou até conseguimos, mas seria muito difícil sobreviver! São lugares como as planícies do Ártico, vulcões em atividade, as profundidades do oceano e planetas distantes. Vamos conhecer alguns?

 

Boaty: o drone submarino

O navio de pesquisa da marinha real britânica RRS David Attenborough vai partir em expedição para explorar o Ártico, mas ele não vai sozinho. Junto, uma série de drones autônomos capazes de voar e submergir, vão trabalhar para descobrir os mistérios das regiões polares.

Um dos drones submarinos que poderá estar a bordo é o Boaty McBoatface. Ele foi planejado para mergulhar a uma profundidade de até 6 mil metros, onde a pressão é 600 vezes maior do que ao nível do mar, nessas condições, robôs e drones menos preparados seriam completamente esmagados.

Boaty é equipado com sensores, equipamentos de filmagem, sonares (do inglês Sound Navigation and Ranging ou “Navegação e Determinação da Distância pelo Som”), microfones especiais e outros apetrechos de comunicação projetados para o uso embaixo da água. O seu objetivo é colher dados sobre as mudanças de temperatura no fundo do oceano e seu potencial impacto nas mudanças climáticas.

boaty

O robô submarino ultra resistente foi apelidado de Boaty McBoatface

Imagem: NATIONAL OCEANOGRAPHY CENTRE

 

Um grande desafio para os projetistas do Centro Nacional de Oceanografia do Reino Unido, foi construir uma máquina capaz de viajar longas distâncias sob o gelo sem precisar recarregar sua fonte de energia. Avanços tecnológicos em microprocessamento, alguns resultantes do desenvolvimento de tecnologia de smartphones, ajudaram nos estudos e permitiram reduzir a quantidade de energia que os drones precisam para funcionar.

Projetado para usar uma quantidade muito baixa de energia, o veículo viaja em uma velocidade relativamente baixa, mas que permite cobrir grandes distâncias e executar missões mais longas, onde os veículos anteriores não podiam chegar.

Em sua primeira expedição sob o gelo, no oeste da Antártida, Boaty passou um total de 51 horas submerso, viajando 108 quilômetros. Ele chegou a 944 metros de profundidade. Os sinais de GPS não chegam tão fundo, o que torna a navegação complicada.

Quando isso ocorre, o drone precisa usar a navegação estimada. A partir de um ponto de origem — como o próprio navio RRS David Attenborough — o robô pode estimar a direção e distância percorridas, calculando a velocidade por meio de um sonar.

Para explorar ainda mais longe e profundamente, novas tecnologias de navegação estão sendo desenvolvidas. Um novo sistema chamado Navegação Assistida de Terreno pode mapear o fundo do mar e repassar as informações para o computador do veículo. O objetivo, a longo prazo, é que os robôs sejam capazes de criar seus próprios mapas em tempo real. Isso ajudará, por exemplo, a completar uma missão sob o gelo atravessando o Ártico, um ambiente sobre o qual sabemos muito pouco.

 

Explorando planetas

A superfície de Marte é ainda mais desafiadora que as condições subaquáticas no polo norte. Para as profundezas vulcânicas do “planeta vermelho”, dois aparelhos estão sendo desenvolvidos pela Nasa.

lemur

O robô Lemur, da Nasa, consegue subir e descer penhascos

Imagem: NASA

Chamado de Lemur, uma das supermáquinas tem quatro membros mecânicos capazes de escalar paredes de pedra, graças a centenas de pequenos ganchos em cada um de seus 16 dedos. O Lemur foi levado por engenheiros dos laboratórios de propulsão a jato da Nasa para um campo de teste no Vale da Morte, na Califórnia. Lá, o aparelho usou inteligência artificial para escolher uma rota e subir um penhasco.

Segundo o pesquisador da Nasa, Aaron Parness, as habilidades do robô para subir rochas podem ser usadas para operações de busca e resgate e ajudar equipes de resposta a desastres.

O maior desafio até então, foi encontrar garras que não sofressem desgaste com o atrito na pedra. Entre as opções estavam titânio, aço, fibra de carbono, carbeto e ligas de aço, foram testados agulhas de costura, seringas, ferramentas de corte de metal e até espinhos de cactos. Entretanto, a solução encontrada foram anzóis de pesca — afiados, fortes e duráveis.

 

Calor extremo

O Volcanobot, também da Nasa, é um aparelho de custo relativamente baixo. Ele foi projetado para percorrer fissuras vulcânicas e sobreviver ao calor extremo. O Volcanobot já mapeou os caminhos de erupções antigas no Kilauea, no Havaí, para entender como esse tipo de vulcão funciona no subsolo.

rocha

Rocha vulcânica é um terreno difícil para humanos e robôs

Imagem: GETTY IMAGES

A tarefa de construir máquinas capazes de navegar terrenos hostis e lidar com temperaturas extremas é muito difícil, pois a rocha vulcânica é extremamente afiada e dura. O robô usa um material misturado com fibra de carbono em suas peças, impressas em 3D, para que elas seja mais resistentes à abrasão.

Sua “casca” criada pela equipe de projetistas consegue aguentar até 300°C, mas os aparelhos eletrônicos dentro do robô são muito mais frágeis — tendem a falhar entre 60°C e 80°C. Para isso, novas tecnologias estão sendo estudadas.

 

Combate a incêndio

A área de equipamentos pesados da Mitsubishi, no Japão, desenvolveu robôs automatizados para combater o fogo e sobreviver ao calor extremo. Equipados com GPS e sensores a laser, os “robôs canhão-de-água” conseguem se posicionar no local ideal para combater o incêndio e enviar um drone com a mangueira até a fonte de água.

robo-canhao

Os robôs bombeiros do Japão suportam calor extremo

Imagem: MITSUBISHI HEAVY INDUSTRIES

O robô bombeiro consegue fazer jorrar até 4 mil litros de água por minuto. Seu sistema passou pelo primeiro teste no Instituto Nacional de Pesquisa em Fogo e Desastre de Tóquio. Seus criadores preveem o uso do robô em situações extremamente instáveis, como incêndios petroquímicos.

É com o desenvolvimento da Ciência e Tecnologia que supermáquinas como essas podem ser criadas e nos ajudar com pesquisas, explorações e também salvando vidas. Se nós não podemos chegar em certos lugares, tudo bem ter uma ajudinha extra, né? ;)

MistériosJPG

6 mistérios que a física ainda não conseguiu explicar

Cientistas criaram teorias para entender e até tentar explicar alguns mistérios do universo, mas até hoje nada foi comprovado. Será que um dia teremos respostas para eles?

Assim como nós, os físicos, astrofísicos e cientistas estão cheios de perguntas. E, apesar dos avanços nestes campos, há mistérios que ainda são impossíveis de serem explicados. Para tentar entender certos fenômenos, foram estabelecidas teorias que, mesmo não podendo ser observadas ou comprovadas diretamente, são a única explicação para definir alguns enigmas do universo. Conheça a seguir alguns deles.

 

  1. A matéria escura

Cientistas calculam que 84% da matéria presente em nosso universo não emite e sequer absorve luz, a chamada matéria escura. Por não absorver nem emitir radiação, ela não pode ser vista diretamente, nem detectada de maneira indireta.

Eles acreditam na existência dessa matéria graças ao efeito gravitacional que exerce sobre outros elementos e sobre a estrutura do universo. Acredita-se que é composta por partículas massivas que interagem sem força entre elas e, por carecer de luz, os astrofísicos não conseguem detectá-la, apesar de saber que está ali.

materia escura

Matéria escura – Fonte: Superinteressante.

 

  1. A energia escura

Cientistas acreditam que há algo que contraria a força gravitacional de atração e, mesmo que a gravidade empurre tudo para o centro do nosso universo, ele continua em expansão.

A gravidade deveria evitar que isso acontecesse, mas na prática é diferente. Para explicar isso, sugere-se que exista uma energia invisível que se contrapõe à força da gravidade — a energia escura. Ela é tida como uma propriedade inerente do próprio espaço. À medida que o espaço se expande, mais espaço é criado e, consequentemente, mais energia escura.

Porém, também não é possível detectar a energia escura e os cientistas não conseguem comprovar sua existência, mas essa é a única explicação que existe até hoje. E mais: embora ninguém saiba como constatar, estima-se que 70% do universo é composto por energia escura!

 

  1. A inflação cósmica

A inflação cósmica é um conjunto de teorias concedida para explicar alguns enigmas que a teoria do Big Bang não podia responder. Diz-se que com a inflação cósmica, houve partes do universo que ficaram mais densas em matéria, e isso explicaria as galáxias e outros fenômenos.

Ao olharmos para o universo, observamos uma esfera que parece se estender por partes iguais em todas as direções. O que torna difícil a explicação de haver uma temperatura uniforme: como duas partes distantes do universo podem ter a mesma temperatura e densidade sem ter estado em contato? A inflação cósmica explica esse fenômeno.

A teoria sugere que essas partes chegaram a formar uma unidade e que, menos de um bilionésimo de segundo depois do Big Bang, o universo se inflou de forma repentina e em grande velocidade, expandido sua matéria a uma velocidade superior à da luz. Durante essa expansão, houve pequenas diferenças de temperaturas, pontos de maior densidade que se materializaram em galáxias e grupos de galáxias. Também foram produzidas as ondas gravitacionais previstas por Albert Einstein.

Apesar deste conhecimento, os físicos não podem atestar o que formou esses conjuntos de estrelas e ondas gravitacionais. Portanto, um fenômeno como a inflação cósmica pode fazer com que seja mais compreensível.

energia escuraA energia escura é uma pressão negativa que empurra o universo a expandir mais rápido. Fonte: Astrofísica para Todos.

  1. O destino do universo

“Para onde vamos?” Essa é uma das perguntas científicas que mais causam curiosidade e outras perguntas até hoje. Acredita-se que isso depende de um fator desconhecido que mede a densidade da matéria e a energia que existe no cosmos.

Considerando que esse fator é maior que a unidade, o universo seria uma esfera. Sem a energia escura mencionada antes, o universo deixaria de se expandir e tenderia a se contrair, provocando o colapso absoluto, num processo inverso ao Big Bang, conhecido também como Big Crunch. Mas, como essa energia existe, os cientistas acreditam que o universo seguirá se expandindo de maneira infinita.

Mas o universo se expandirá para sempre? Considerando-o como uma esfera e caso a energia escura exista de fato, esse universo esférico se expandirá eternamente.

De maneira alternativa, o universo pode ser curvo e aberto, como a superfície de uma sela para montar cavalos. Neste caso, o universo pode caminhar para dois processos — o Big Freeze e Big Rip. No primeiro, a aceleração do universo fará com que ele acabe desfazendo galáxias e estrelas, deixando matéria fria e abandonada. Depois, a aceleração aumentaria de maneira tão grande, que poderia superar a força que mantém os elementos de um átomo em seus devidos lugares, destruindo-o completamente.

Outra alternativa é que o universo pode ter uma estrutura planar, como uma mesa que se expande para todas as direções. Caso a energia escura não exista, neste modelo a aceleração da expansão do universo seria reduzida aos poucos, até parar completamente. Mas se a energia escura existir, tudo terminaria destruído com o Big Rip.

big ripSimulação do Big Rip. Fonte: Theweek.

 

  1. A entropia

Você sabia que alguns cientistas duvidam que o tempo tenha corrido sempre para a frente, mas não conseguem provar o contrário? Isso é explicado por uma propriedade da matéria chamada entropia, que é a quantidade de desordem de um sistema. Neste caso, das partículas do universo.

Basicamente, se o universo se desloca de uma baixa entropia para uma alta entropia, nunca poderemos ver os acontecimentos se reverterem. Esse movimento é irreversível, mas suscita um novo enigma para os cientistas: por que o universo era tão organizado em seu início? Se, como confirmado em outras teorias, havia uma grande quantidade de energia acumulada em um espaço tão reduzido, por que a entropia (a desordem) era tão baixa na origem do cosmos? Ainda não há resposta para isso.

 

  1. Os universos paralelos

Será que o universo em que vivemos é único? Até hoje, nada garante isso. Muitos cientistas defendem a hipótese de que é possível que o que chamamos de universo seja somente um entre outros infinitos espaços.

As leis da física quântica dizem que a configuração das partículas dentro de cada espaço é finita e que esta configuração deve, necessariamente, se repetir, o que implicaria em uma infinidade de universos paralelos. É daí que vem o conceito de multiverso, ou seja, diversos universos paralelos coexistindo sem que um tenha contato com o outro.

universos-paralelosUniversos paralelos. Fonte: Hypescience.

Da matéria escura aos universos paralelos: são tantos questionamentos! Que a ciência esteja sempre em evolução e que possamos presenciar a solução desses mistérios. <3

 

AntimateriaJPG

Antimatéria: história e curiosidades

Assim como o nome sugere, a antimatéria é o inverso da matéria. Mas o que isso quer dizer?

Assim como o nome sugere, a antimatéria é o inverso da matéria. Cada partícula elementar que conhecemos possui uma partícula oposta que apresenta exatamente as mesmas características, exceto a carga elétrica, que é inversa. O pósitron, por exemplo, é a antimatéria do elétron, portanto, possui a mesma massa, mesma rotação, mesmo tamanho, mas carga elétrica de sinal oposto.

materia-e-antimateria

Matéria e antimatéria, constituídas de antipartículas.

Tudo o que se sabe sobre essas antipartículas vem de experiências realizadas em aceleradores de partículas, que apresentam antipartículas como produto. Dentro desses imensos laboratórios, a dificuldade de produzir e analisar a antimatéria está no fato de que, no encontro da matéria com a antimatéria, sempre ocorre aniquilação, ou seja, uma destrói a outra, gerando uma grande quantidade de energia.

 

Descoberta

A história da antimatéria começa em 1928, quando o físico britânico Paul Andrien M. Dirac revisou a equação da equivalência entre massa e energia proposta por Einstein e propôs que as partículas podem ter valores negativos de energia. Ou seja: que um elétron poderia emitir radiação infinitamente, ficando cada vez com energias mais negativas, o que não é aceitável do ponto de vista físico. 

Para consertar esta inconsistência do seu modelo, Dirac argumenta que todos os estados relacionados a energias negativas estão ocupados, assim uma partícula não poderia ir para um estado de energia negativa, isto ficou conhecido como Mar de Dirac. Uma consequência do mar de Dirac é que o consideramos como vácuo não é vazio, existe uma infinidade de partículas nos estados de energia negativa.

Logo, para Dirac, uma antipartícula nada mais é do que um espaço vago no Mar de Dirac, assim um elétron pode perder energia emitindo radiação e indo pro estado quântico vago descrito pelo antielétron. Um observador veria um elétron colidindo com um antielétron, depois da colisão ambos desapareceriam e a energia seria emitida na forma de radiação.

Em 1932,  um ano após a previsão de Dirac, Carl Anderson detectou a presença de elétrons positivos durante um experimento com raios cósmicos. O antielétron detectado foi chamado de pósitron e tem as mesmas características do elétron, mas apresenta carga elétrica de sinal positivo. Em 1955, cientistas criaram o antipróton por meio de um acelerador de partículas. Desde então, os estudos relacionados com antimatéria vêm revelando antipartículas de nêutrons, quarks, léptons etc.

 

Como produzir antimatéria?

A antimatéria existe de maneira natural, porém em pequeníssimas quantidades. É o caso da banana, por exemplo, que emite um pósitron a cada 75 minutos, pois possui em sua composição química um isótopo radioativo de potássio (40K) que sofre decaimento β+, mas como o nosso universo é feito predominantemente de matéria, rapidamente este pósitron encontra um elétron e eles se aniquilam, sobrando somente radiação.

Hoje os cientistas são capazes de produzir antimatéria nos aceleradores de partículas, como o famoso LHC. Nessas máquinas de incrível complexidade, feixes de partículas e/ou antipartículas são lançados em anéis circulares ou retilíneos e são colididos com outros feixes. Essas colisões, quando feitas com energia suficiente, recriam as condições do universo no Big Bang. 

lhc10

LHC: o maior acelerador de partículas do mundo.

Ao acelerar átomos a altíssimas velocidades com um acelerador de partículas, elas podem ser colididas com um determinado alvo. As antipartículas resultam dessa colisão e são separadas pela ação de campos magnéticos. Em média, a cada 10.000 colisões de prótons é gerado um antipróton, é isto que torna a produção de antimatéria tão cara.

 

Antimatéria como fonte de energia

Ao pensar nas possíveis aplicações que podem surgir da pesquisa em antimatéria, podemos citá-la como uma fonte de energia compacta.

Já falamos que ao encontrar matéria, a antimatéria é aniquilada. Nesta aniquilação é liberada uma grande quantidade de energia. Quanta energia? Essa reação é o único processo que converte 100% da massa de uma partícula em energia, lembrando da famosa equação de Einstein, E=mc², tem muita energia armazenada na massa das partículas que normalmente não pode ser acessada.

A aniquilação de um grama de antimatéria com um grama de matéria resultaria na liberação de 50 GWh de energia, o suficiente para manter uma lâmpada de 100 W acesa por mais de 57 mil anos!

Essa energia pode ter uma aplicação valiosa para exploração espacial, pois uma boa parte do problema que temos ao lançar um foguete ao espaço é o combustível necessário para sair da atmosfera da Terra. Para isso acontecer ainda é preciso melhorar a eficiência da produção de antimatéria, baratear o processo, desenvolver novas tecnologias de armazenamento e aprender a controlar o uso desta energia, caso contrário teríamos apenas uma bomba poderosíssima! :O

Tensão

110 V ou 220 V? Por que regiões do Brasil têm padrões de tensão diferentes?

Existe uma linha que divide o mundo em duas partes: uma delas usa a tensão de 110 V a 120 V e a outra de 220 V a 240 V.

Existe uma linha que divide o mundo em duas partes: uma delas usa a tensão de 110 V a 120 V e a outra de 220 V a 240 V. No Brasil a situação é ainda mais complicada, pois a tensão varia de um estado para outro, de uma cidade para outra e até mesmo dentro de uma cidade.

Isto acontece porque, quando a instalação da rede elétrica ocorreu no Brasil, lá no início do século 20, as companhias contratadas para o serviço eram estrangeiras e não tinham um padrão a seguir. Assim, a escolha do sistema elétrico como sendo de 110 volts ou de 220 volts, dependeu da empresa que executou a instalação nas diferentes regiões do Brasil.

Na região sudeste, por exemplo, empresas canadenses optaram por estabelecer a voltagem de 110 V, enquanto as primeiras concessionárias de energia que atuaram na região nordeste optaram pela rede elétrica de 220 V. Um dos motivos para a rede de energia elétrica nunca ser padronizada no Brasil é que o custo seria altíssimo.

 

Polêmica histórica

A “guerra das correntes”, ocorrida no fim do século 19, época da introdução dos primeiros sistemas de transmissão de energia, envolve Thomas Edison e Nikola Tesla.

thomasxnicolas

Thomas Edison e Nikola Tesla

Nessa época, Edison promovia o uso da Corrente Contínua (DC, na sigla em inglês), que trabalhava com 100 V e era impossível de converter em outras tensões até então. Já Tesla afirmava que a Corrente Alternada (AC) era melhor: sua tensão podia ser modificada com facilidade, reduzindo os custos, e poderia transportar energia por grandes distâncias.

Edison, por sua vez, sustentava que a AC era perigosa. E, para demonstrar isto, ele organizou demonstrações nas quais eletrocutou animais com a corrente “rival”. Mas, apesar da guerra de publicidade, Tesla saiu ganhando. Na Feira Mundial de Chicago, o cientista fez passar pelo próprio corpo uma corrente alternada de milhões de volts e saiu ileso.

Tudo indica que Tesla foi ajudado em sua experiência ao usar uma alta frequência e sapatos com sola de borracha. Essa demonstração, somada aos custos menores da corrente alternada e à capacidade de transmissão, marcaram sua vitória e a adoção deste sistema.

Mas as lâmpadas de Edison eram muito populares nos Estados Unidos. E como funcionavam com voltagem de 100 V, elas foram adaptadas à Corrente Alternada de Tesla. Hoje, o sistema AC é usado em linhas de transmissão de energia em grandes distâncias, muito populares em vários países.

Já falamos sobre esta guerra aqui no blog, clique aqui para saber mais.

 

110 V ou 220 V?

Não existe uma diferença técnica entre as duas tensões. O desempenho de aparelhos iguais que trabalham em uma tensão elétrica diferente é exatamente o mesmo. Portanto, a quantidade de energia consumida por um aparelho que funciona a 110 V é igual a de um aparelho de 220 V.

No caso de aparelhos elétricos que transformam energia elétrica em calor, como aquecedores, ferros elétricos e secadores de cabelo, a tensão de 220 V pode garantir um melhor desempenho para instalações elétricas que apresentam as mesmas características.

É por questão de segurança que a maior parte do Brasil utiliza 110 V.  O choque elétrico que resulta de uma tensão de 220 V pode gerar mais danos que um choque de uma tensão de 110 V. Além disso, as grandes distâncias percorridas pela corrente elétrica, desde a usina até o consumidor final, geram uma grande perda de energia, o que justifica uma tensão menor para a maioria dos consumidores.

 

Tomadas

Vale lembrar também que no Brasil, até pouco tempo atrás, não possuímos um padrão de tomadas e plugues. Visto isso, a ABNT (Associação Brasileira de Normas Técnicas) criou a norma NBR14136 que se refere à padronização de tomadas e plugues, de forma que possam garantir maior segurança do usuário no manuseio do equipamento, bem como eliminar o uso de adaptadores para a ligação dos plugues incompatíveis.

IMAGEM_TOMADA_SOBREPOR_555x370px

Linha Sobrepor e Móveis & Pedras – WEG Tomadas

 

Você sabia que a WEG também atua nesse ramo? Confira o blog da WEG Tomadas e saiba mais sobre a linha de Tomadas e Interruptores: https://www.weg.net/tomadas/blog/ :)

RaiosJPG

RAIOS: curiosidades que te deixarão de cabelo em pé

Curiosidades sobre este temido fenômeno da natureza! :O

Imagine um fenômeno natural produzido por descargas atmosféricas formadas em razão do grande acúmulo de cargas elétricas nas nuvens. Imaginou? Esse fenômeno natural também é conhecido como raio. A intensidade típica de um raio é de 30 mil ampères, para ter uma ideia, isto corresponde a cerca de mil vezes a intensidade de um chuveiro elétrico, mas essa intensidade pode variar de 2 mil a 200 mil ampères! Vamos a mais curiosidades?

Qual o poder destrutivo dos raios?

Frequentemente os raios podem causar explosões de transformadores da rede de energia, além de danos a eletrodomésticos, mesmo que tenham caído a grande distância das residências. Eles também podem provocar a destruição total das residências que tenham sido atingidas. 

Onde o raio costuma cair?

Torres metálicas, chaminés, topos de montanhas, árvores isoladas, casas construídas em campos, edifícios altos, antenas externas e redes elétricas são pontos com maior incidência de queda de raios. Isto, porque o raio procura sempre o caminho de menor “resistência” entre a nuvem e a terra e os pontos altos e pontiagudos favorecem o início da descarga elétrica.

Como o raio chega até nossas casas?

Mesmo que a maior incidência de raios ocorra longe das residências, a corrente dessa descarga produz um campo eletromagnético que se irradia pelo ambiente. Este campo eletromagnético provoca um surto elétrico nas redes de energia e de

telecomunicações, deslocando-se facilmente até as casas. Em menor incidência, os raios podem atingir diretamente casas, prédios e a própria rede elétrica, principalmente situados em pontos altos ou descampados, como nos exemplos do parágrafo anterior.

Qual a duração de um raio?

Um raio dura em média cerca de meio a um terço de segundo, podendo durar até dois segundos. No entanto, cada descarga que compõe o raio dura apenas frações de milésimos de segundos.

Um raio pode cair duas vezes em um mesmo lugar?

Ao contrário do que afirma o ditado popular, um raio pode cair várias vezes em um mesmo lugar. Um exemplo disto é o monumento do Cristo Redentor, ele é atingido anualmente por cerca de seis raios. 

A energia de raio é grande?

Embora a potência de um raio seja grande, o pouco tempo de duração faz com que a energia seja pequena, algo em torno de 300 kWh, equivalente ao consumo mensal de energia de uma casa pequena.

Um raio pode atingir diretamente uma pessoa?

Apesar da chance de uma pessoa ser atingida diretamente por um raio ser muito baixa, em média menor do que 1 para 1 milhão, é possível. Se a pessoa estiver numa área descampada embaixo de uma tempestade forte, a chance pode aumentar em até 1 para mil. Entretanto, ser atingido diretamente por um raio não é o maior causador de mortes e ferimentos, mas sim os efeitos indiretos associados a incidências próximas ou efeitos secundários dos raios, como incêndios, por exemplo.

O que pode acontecer com uma pessoa que foi atingida por um raio?

Pode causar queimaduras e outros danos em todo o corpo. A maioria das mortes é causada por parada cardíaca e respiratória. Parte dos sobreviventes atingidos por um raio sofre por um longo tempo de sequelas psicológicas e orgânicas.

Como saber se o raio caiu perto?

É possível observar a luz produzida pelo raio quase instantaneamente. Já o som (trovão) demora um bom tempo, pois a sua velocidade é menor. Para obter a distância aproximada da queda do raio, em quilômetros, basta contar o tempo (em segundos) entre o momento em que se vê a luz do raio e se escuta o trovão e dividir por três.

Por que o Brasil é o país campeão mundial em incidência de raios?

Estima-se que o Brasil é atingido por 50 milhões de raios por ano e a explicação é geográfica: é o maior país da zona tropical do planeta — área central onde o clima é mais quente e, portanto, mais favorável à formação de tempestades e de raios. A região entre Coari e Manaus é a com maior incidência de raios do Brasil. 

Qual a diferença entre relâmpagos e raios?

Relâmpagos são todas as descargas elétricas geradas por nuvens de tempestades, que se conectam ou não ao solo. Já os raios são somente as descargas que se conectam ao solo.

Existem raios em outros planetas?

Sim! Há evidências de raios observadas em outros quatro planetas do sistema solar: Vênus, Júpiter, Saturno e Urano.

As cidades influenciam a ocorrência de raios?

Pesquisas indicam aumentos da incidência de raios em áreas urbanas. Isso acontece devido ao aumento de temperatura (fenômeno conhecido como ilha de calor) e de poluição nos centros urbanos.

Raios causam aquecimento global?

São duas as possibilidades dos raios influenciarem o processo do aquecimento global: incêndios e mudanças químicas na atmosfera. Em regiões de menor umidade, como a California (EUA) e Canadá, os raios causam incêndios florestais de grandes proporções. Além disso, as descargas elétricas mudam a composição química da atmosfera a seu redor, podendo causar o efeito estufa. 

Agora que você já sabe tudo sobre os raios, compartilhe esse texto com seus amigos! Não esqueça de nos seguir nas redes sociais, assim você sempre estará atualizado sobre nossas dicas e curiosidades sobre Ciência e Tecnologia: www.facebook.com/MuseuWEG / www.instagram.com/MuseuWEG =)

 

Solar

O que é e como funciona a energia solar fotovoltaica?

A energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos.

Você já parou para pensar que o Sol é o principal responsável pela origem de diversas fontes de energia? Através dele se dá a evaporação, fase inicial do ciclo das águas, que permite a geração de energia através das hidrelétricas, o Sol também permite a circulação atmosférica por todo o mundo, originando os ventos, outra fonte energética.

Já a energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos, porém quanto maior for a radiação solar, maior será  a quantidade de eletricidade produzida. A energia provinda do sol é inesgotável, uma excelente fonte de calor e luz e uma das grandes alternativas energéticas para o futuro.

Procurando por fontes de energia em locais remotos e isolados, praticamente sem rede elétrica, o desenvolvimento e investimento em energia solar começou em empresas do setor das telecomunicações. A tecnologia também foi logo utilizada para as missões no espaço

A energia fotovoltaica pode oferecer solução para diversas necessidades: desde ligar uma simples lâmpada de um poste de iluminação, até oferecer uma alternativa de produção de energia para uma casa ou mesmo uma grande usina solar, produzindo energia para milhares de famílias.

 

Como é produzida a energia solar

O processo de conversão da energia solar somente é possível graças ao efeito fotovoltaico, (composto por células normalmente feitas de silício ou outro material semicondutor). Assim, quando a luz solar incide sobre uma dessas células fotovoltaicas, os elétrons do material semicondutor são postos em movimento e geram eletricidade.

O efeito fotovoltaico, muito resumidamente, foi identificado por Edmond Becquerel em 1839, e significa o aparecimento de uma diferença de potencial nos extremos de uma estrutura de material semicondutor, que se deve à absorção da luz!

 

Entendendo a esquemática da energia solar fotovoltaica:

1) Os fótons da energia solar atingem as células fotovoltaicas, fazendo com que alguns dos elétrons que circundam os átomos se desprendam.

2) Estes elétrons livres vão migrar, através da corrente eléctrica, para a parte da célula de silício que está com ausência de elétrons.

3) Durante o dia todo, os elétrons irão fluir em uma direção constantemente, deixando átomos e preenchendo lacunas em átomos diferentes. Este fluxo de elétrons cria uma corrente elétrica, ou seja, a Energia Solar Fotovoltaica.

A potência gerada através dessa esquemática é enviada para o inversor — equipamento que converte a energia para os padrões da rede concessionária (corrente alternada). Depois disso, a energia é injetada na rede elétrica da residência, pronta para ser utilizada pelo consumidor.

 

 

sistema-de-microgeraçãoDiagrama esquemático do sistema fotovoltaico. Fonte: luzsolar.com.br

 

O mercado da energia fotovoltaica

Mais de 100 países já utilizam energia solar fotovoltaica. Os mercados que mais crescem são China, Japão e Estados Unidos, enquanto a Alemanha é o país que mais a produz, a energia provinda do sol é responsável por 6% da sua demanda de eletricidade. A energia solar fotovoltaica é agora, depois de hidráulica e eólica, a terceira mais importante fonte de energia renovável em termos de capacidade instalada a nível mundial.

Entre as vantagens na utilização da energia solar fotovoltaica estão: energia limpa; pode ser instalada em qualquer lugar; sistema silencioso; fonte inesgotável; sistema confiável; baixa manutenção; fácil instalação; é modular, pode ser ampliado conforme necessidade.

A energia fotovoltaica há muito tempo é vista como uma tecnologia de energia limpa e sustentável, que se baseia na fonte renovável de energia mais abundante e amplamente disponível no planeta – O SOL. Se você quer saber mais sobre fontes de energia renováveis, leia nosso artigo sobre a matriz energética no Brasil. :)

 

Marie

Marie Curie: quem foi a primeira mulher a ganhar um prêmio Nobel

Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

Em uma época onde apenas os homens podiam ir à universidade, Marie Curie descobriu um elemento químico e iniciou uma verdadeira revolução no meio científico. Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

E não é “apenas” isso. Naquela época, como mulher, Marie Sklodowska Curie precisou enfrentar muitas dificuldades para alcançar seus sonhos, e apesar de todo o preconceito da sociedade foi pioneira por sua coragem, determinação e descobertas científicas, ela não foi só a primeira mulher a ganhar um Nobel em Ciências, como foi a primeira pessoa a receber o prêmio duas vezes.

Encorajada pelo pai a se interessar pela ciência, a polonesa terminou os estudos aos 15 anos e passou a trabalhar como professora. Como o governo russo proibia que mulheres frequentassem universidades dentro de seu império, para continuar os estudos, Marie mudou-se para Paris.  Em 1883, graduou-se bacharel em Física e Matemática pela Universidade de Sourbonne, tornando-se, mais tarde, a primeira mulher a lecionar nessa importante instituição de ensino europeia. Depois de formada, foi a primeira classificada para o mestrado em Física e, no ano seguinte, a segunda para o mestrado em Matemática.

Em 1894, Marie conheceu o professor Pierre Curie com o qual se casou no ano seguinte, e passou utilizar o sobrenome Curie. Na época Pierre trabalhava no Laboratório de Física e Química Industrial no qual trabalharam juntos mais tarde.

Em julho de 1898, o casal conseguiu isolar um elemento 300 vezes mais ativo que o urânio. Em homenagem à sua terra, Marie batizou-o de polônio. Mas os Curie não estavam satisfeitos, porque o resto do material, depois de extraído o polônio, era ainda mais potente. Continuaram a purificação e cristalização e encontraram um novo elemento, 900 vezes mais radioativo (termo criado por Marie) que o urânio. Estava descoberto o “rádio”.

Durante a Primeira Guerra Mundial, Marie encabeçou a implementação de um sistema de radiografia móvel — um veículo que tinha uma máquina de raios-X e equipamento fotográfico de câmara escura — ajudando no tratamento de milhões de soldados. Além disso, também contribuiu para a ciência ao aprisionar o gás que emanava do elemento rádio e enviar os tubos para o tratamento do câncer em hospitais do mundo inteiro.

408d105b7e8237aa5d81430d5aa56787-783x450

“Eu faço parte dos pensam que a Ciência é belíssima. Um cientista em um laboratório não é apenas um técnico, ele é também uma criança diante de fenômenos naturais que o impressionam como um  conto de fada. Não podemos acreditar que todo progresso científico se reduz a mecanismos, máquinas, engrenagens, mesmo que essas máquinas tenham sua própria beleza”. Marie Curie

 

Prêmio Nobel

Seu primeiro Prêmio Nobel foi em 1903, dividido com seu marido Pierre Curie e o físico Henri Becquerel — pelas pesquisas sobre radiação.

Em 1904, Pierre foi nomeado professor da Sorbonne e Marie assumiu o cargo de assistente-chefe do laboratório dirigido por seu marido. Em 1905 Pierre Curie foi eleito para a Académie des Sciences. Dois anos depois Pierre Curie morreu tragicamente, vitimado por um atropelamento e Marie foi indicada para substituí-lo, tornando-se a primeira mulher a ocupar uma cadeira de professor na Sorbonne, e a primeira mulher a ocupar tal cargo na França.

Marie continua a estudar a radioatividade, principalmente suas aplicações terapêuticas e, em 1911, foi agraciada com o segundo Prêmio Nobel, desta vez de Química, por suas investigações sobre as propriedades do rádio e as características dos seus compostos. Tornou-se a primeira personalidade a receber duas vezes o Prêmio Nobel.

 

Morte

Em 4 de julho de 1934, Marie Curie faleceu perto de Sallanches, na França. Seus órgãos vitais estavam comprometidos devido à constante exposição à radioatividade sem nenhuma proteção.

Inspirada pela mãe, a filha de Marie, Irène Joliot-Curie, trabalhou com o marido Frédéric Joliot nos campos da estrutura do átomo e física nuclear, demonstrando a estrutura do nêutron e descobrindo a radioatividade artificial, feito este que rendeu mais um Prêmio Nobel para a família Curie.

A história de Marie rendeu muitos materiais audiovisuais. Para conhecer um pouco mais dessa fantástica história, o Museu WEG separou dois vídeos: o documentário “Marie Curie: A Mãe da Radiação” e o filme “Marie Curie na Guerra”, de 2014. Ambos disponíveis no Youtube. Assista:

 

***

Além de um ícone da ciência, Marie Curie também foi uma heroína de guerra e uma grande inspiração para que mais mulheres continuem seus estudos nos campos científicos. Que seu legado continue inspirando novos e novas cientistas no mundo todo! :)

 

Terra

O que aconteceria se, de repente, a Terra parasse de girar?

Se a Terra parasse de girar de repente, tudo o que se encontra na superfície terrestre seria arrancado violentamente daqui: pessoas, árvores, animais, cidades, oceanos e até mesmo o ar da atmosfera.

Tudo sairia voando!

Se a Terra parasse de girar de repente, tudo o que se encontra na superfície terrestre seria arrancado violentamente daqui: pessoas, árvores, animais, cidades, oceanos e até mesmo o ar da atmosfera. Tudo o que se encontra na superfície terrestre sairia voando! Tudo por causa da inércia dos corpos, já que tudo que existe na Terra, inclusive o ar, gira junto com o planeta.  

Agora imagine que a Terra completa sua rotação a cada 24 horas a uma velocidade de aproximadamente 1.700 quilômetros por hora! Se a freada brusca de um ônibus faz com que os passageiros sejam jogados para a frente, imagine o que não aconteceria com os habitantes da Terra?

Explicando de maneira simples: imagine um ônibus em alta velocidade freando de repente. A inércia faz com que todos os passageiros vão para frente, podendo até mesmo serem arremessados. Ou seja: se você estiver dentro de um ambiente fechado, as notícias não são lá muito boas.

Os corpos seriam arrancados da superfície e em seguida cairiam, pois mesmo os 1.700 quilômetros por hora, não são suficientes para fazer com que os corpos escapem do campo gravitacional e se percam no espaço. Então todos os destroços sólidos, os oceanos e a atmosfera cairiam de volta.

 

earth-1990298_960_720Tudo o que se encontra sobre a superfície terrestre seria arrancado violentamente.

 

O acontecimento geraria fissuras e pontos de tensão na crosta, o que causaria grandes derramamentos de magma e os maiores terremotos já vistos. Os oceanos continuariam a se mover a quase 1.700 quilômetros por hora no equador, gerando a maior onda e o maior tsunami já registrados na história. A atmosfera continuaria a se mover com a mesma velocidade da rotação da Terra, o que causaria ventos até 6 vezes mais fortes que os furacões de categoria 5. Esses ventos estariam tão rápidos que fariam os objetos parados em relação a eles quebrarem a barreira do som.

Agora, imagine que alguém sobreviva a esse voo em velocidade supersônica! Seria quase impossível sobreviver, a Terra continuaria sua trajetória ao redor do Sol, mas a falta de rotação acabaria com o conceito de dia e noite, seriam seis meses exposição solar — um deserto com temperaturas altíssimas — e seis meses de escuridão — tão frio que crostas de gelo seriam formadas rapidamente. A diferença térmica entre os dois lados provocaria ventanias terríveis.

Outra possível consequência dessa catástrofe, seria a perda de nosso campo magnético. Ou seja: a Terra ficaria sem proteção contra as partículas de altas energias provenientes do vento solar. Que medo!

Artes

Brasileiros analisam história da arte usando física

Haroldo, físico da Universidade de Maringá, no Paraná, foi criticado por vários pintores que achavam que não era possível quantificar a arte.

Segundo historiadores, a arte é dividida por suas características e estilos como, por exemplo, moderna e contemporânea. Pensando nisso, os físicos brasileiros Haroldo Ribeiro e Higor Sigaki buscaram verificar essa afirmação histórica, mas desta vez de uma maneira matemática.

No início, ao utilizar fórmulas matemáticas para analisar pinturas, Haroldo, físico da Universidade de Maringá, no Paraná,  foi criticado por vários pintores que achavam que não era possível quantificar a arte. Mas ele não desistiu e em parceria com Higor, desenvolveu um programa de computador que desconstrói obras de arte e as transforma em conjuntos de números para encontrar um padrão nas pinturas e na evolução da arte.

Nesta pesquisa, os físicos calcularam a probabilidade de os pintores seguirem um determinado padrão em cada momento da história.

Analisando a quantidade de pixels nas pinturas e as transformando em matrizes, as obras são caracterizadas a partir de dois critérios: entropia e complexidade. A entropia é a desordem, ou seja, os pixels dispostos de maneira aleatória em uma imagem. Já o conceito de complexidade, dando jus ao nome, é um pouco mais difícil de entender.

Segundo Ribeiro, em entrevista à GALILEU, a pesquisa aborda como complexo algo que não é totalmente aleatório mas que também não segue um padrão regular. “Uma pintura muito aleatória não é complexa. No entanto, uma pintura completamente ordenada também não é. O complexo está entre o aleatório e o regular. Tem que estar no meio, mas distante dos dois”, explicou.

Como já diziam os historiadores, a dupla foi capaz de encontrar uma mudança nos padrões das obras. Na arte moderna, por exemplo, as pinturas costumam ter uma grande entropia, mas pouca complexidade, mostrando que a arte é mais aleatória e desordenada. No caso da arte pós-moderna, as pinturas têm alta complexidade e baixa entropia. As artes da renascença ficam entre os dois conceitos.

No trabalho, as duas pinturas abaixo são tomadas como exemplos. A primeira, “Who’s Afraid of Red, Yellow and Blue”, de Barnett Newman, é classificada como tendo baixa entropia e baixa complexidade, já que segue padrão regular. Já a segunda pintura, “The Garden of Earthly Delights”, feita por Hieronymus Bosch, é considerada mais complexa, mas com um grau de entropia mediano.

arte1

Exemplos de pinturas analisadas pela complexidade e entropia (Foto: reprodução)

O objetivo da análise é realizar uma classificação cada vez mais efetiva das obras de arte, que é algo muito demorado para ser feito, mesmo por um especialista de obras de arte. Mais uma vez fomos surpreendidos pelas equações e tudo o que elas podem fazer por nós e nossa história!

Fonte: Revista Galileu.