Categoria: Ciência

Museu WEG recebe exposição itinerante do Museu de Ciência e Tecnologia da PUC do Rio Grande do Sul

Evento faz parte das comemorações de 20 anos do Museu WEG e o aniversário de 62 anos da Companhia O…

Evento faz parte das comemorações de 20 anos do Museu WEG e o aniversário de 62 anos da Companhia

O Museu de Ciência e Tecnologia da WEG, localizado em Jaraguá do Sul/SC receberá a exposição itinerante “Explorando as Mudanças Climáticas”, elaborada pelo Museu de Ciência e Tecnologia da PUCRS. O evento, viabilizado pelo Ministério da Cultura, acontecerá nos dias 16 e 17 de setembro (sábado e domingo), com um total de 10 sessões diárias, cada uma com duração de 45 minutos, com início às 9h.

Esta iniciativa é parte integrante das celebrações do 20º aniversário do Museu WEG, que ocorre no dia 16 de setembro, na mesma data em que a Companhia WEG comemora seus 62 anos de existência.

O tema central desta exposição, “Mudanças Climáticas”, é de extrema relevância nos dias de hoje, proporcionando aos visitantes uma oportunidade única de refletir sobre questões críticas. Durante a exposição, os visitantes terão a chance de adquirir conhecimentos valiosos sobre uma variedade de tópicos relacionados às mudanças climáticas, com vários equipamentos interativos onde o visitante poderá duelar (jogar) entre as fontes de energia renováveis e tradicionais, entender de forma divertida como acontece a Emissão de Carbono, Variação da Temperatura da Terra e muito mais, tornando o aprendizado envolvente e estimulante.

A exposição é acessível a todas as idades, com uma classificação indicativa que permite a participação de crianças a partir de três anos de idade. Portanto, é uma excelente oportunidade para toda a família se envolver nesse importante diálogo que impacta o nosso mundo.

Para participar, basta se inscrever através do link: https://forms.gle/s3pLXJ6AHZZSDHHu9. As vagas são limitadas.

Revolução Científica do século XVII: explorando as transformações de Galileu

Entenda o que foi a Revolução Científica do século XVII, conhecendo Galileu Galilei e suas principais contribuições para a ciência.

O século XVII foi um período de avanços e questionamentos, em que a visão de mundo vigente foi desafiada e novos paradigmas surgiram. 

Galileu Galilei, um dos mais importantes personagens dessa época, destacou-se por suas descobertas e contribuições revolucionárias para a física, astronomia e metodologia científica.

Ele foi pioneiro no uso do telescópio para observar o céu, revelando descobertas surpreendentes, como as fases de Vênus e as luas de Júpiter, que desafiaram as concepções geocêntricas da época. 

Neste conteúdo, exploraremos mais detalhadamente as transformações trazidas por Galileu durante a Revolução Científica do século XVII. Vamos analisar suas principais descobertas, sua influência na astronomia e na física, bem como seu impacto duradouro no método científico.

A Revolução Científica do século XVII

A Europa passou por grandes dificuldades durante o século XVII, que envolviam os desastres deixados pela guerra, a fome, as crises econômicas e a divisão religiosa cada vez mais evidente.

Em contrapartida, nasceu do meio de tudo isso, a curiosidade de diversos estudiosos da época para compreender os segredos do mundo. Durante esse tempo, surgiram importantes descobertas que transformaram nosso entendimento do universo.

A Revolução Científica do século XVII foi um período de mudanças radicais na ciência. Entre as maiores descobertas dessa revolução, destacam-se a observação astronômica precisa, a formulação de leis do movimento e o desenvolvimento do método científico.E é aí que Galileu entra nessa história. Ele é considerado o pai da ciência moderna devido ao seu papel fundamental na consolidação das bases do pensamento científico no fim da Idade Média. 

Quem foi Galileu Galilei?

Desde muito cedo, Galileu Galilei mostrou-se apto à criação de engenhocas, sendo estimulado desde pequeno ao desenvolvimento de seus saberes científicos (já que seu pai desejava que Galileu seguisse no ramo da medicina). 

O primeiro passo dele rumo à nova era científica se deu a sua descoberta de que Aristóteles estava errado em afirmar que a velocidade de queda dos corpos era proporcional ao seu peso. Um pensamento que não era contestado em milênios. 

Galileu mostrou as comunidades científicas da época que nem tudo que havia sido deduzido no passado seria obrigatoriamente uma verdade incontestável, acendendo o fogo da curiosidade no mundo acadêmico.

Ele foi o responsável por grandes avanços em áreas como a astronomia, a física e a matemática. Sua abordagem inovadora e suas descobertas revolucionaram a forma como entendemos o universo.

As principais transformações de Galileu Galilei 

O comportamento de Galileu se assemelha muito ao de outros cientistas de renome da nossa história, buscando a verdade acima da crença e da dedução. Deixou um legado de transformações fundamentais para a compreensão científica. Suas contribuições abrangeram diversos campos do conhecimento. Confira a seguir as principais.

Observações astronômicas

Galileu construiu seu próprio telescópio e realizou observações astronômicas inovadoras. Essas observações contrariaram as antigas concepções geocêntricas e abriram caminho para a compreensão do sistema solar, como:

→ O fato de que sempre se via a mesma face da Lua e que ela era moldada por crateras.

→ A certeza de que Júpiter tinha seus próprios satélites.

→ A confirmação de que Saturno possuía anéis o envolvendo. 

→ O fato de que o sol sempre rotacionava por seu eixo.

→ E, por fim, que Vênus e Marte possuíam suas próprias fases. 

Leis do Movimento

Galileu formulou leis fundamentais sobre o movimento, as quais foram a base para os estudos posteriores de Isaac Newton. Ele demonstrou que um objeto em movimento, impulsionado por uma força, só para devido ao atrito causado por forças externas. 

Além disso, suas pesquisas sobre queda livre contestaram as ideias aristotélicas, mostrando que a velocidade da queda não era influenciada pelo peso dos objetos. 

Queda livre

Galileu realizou experimentos para estudar a queda livre do corpo, onde ele defendeu que a velocidade da queda de objetos diferentes seria sempre a mesma, sendo afetada apenas pela resistência do ar aplicada a cada um deles. 

Essa descoberta desafiou as antigas concepções sobre a gravidade e abriu caminho para a compreensão mais precisa dos fenômenos físicos. 

Método científico

Galileu Galilei foi um cientista revolucionário que introduziu o método científico como uma forma sistemática de investigação. Antes de Galileu, a ciência era muitas vezes baseada em suposições e crenças, sem uma abordagem estruturada para testar e comprovar ideias.

O método utilizado por Galileu Galilei mudou a forma como as próximas gerações compreendiam a ciência: o Método Experimental, também conhecido como Método Científico. 

Galileu introduziu o método científico como uma abordagem sistemática para a investigação científica. Seu método, baseado em observação, experimentação e formulação de teorias, trouxe rigor e objetividade ao processo científico. 

Graças ao método científico de Galileu, a ciência moderna se tornou uma disciplina confiável, capaz de investigar e compreender os fenômenos naturais com base em evidências sólidas.

A importância das contribuições de Galileu para a ciência moderna

As contribuições de Galileu Galilei foram extremamente importantes para a ciência moderna. Ele trouxe uma abordagem inovadora que mudou completamente a forma como a ciência era compreendida e conduzida.

Galileu aprimorou a forma como fazemos observações, tornando-as mais precisas e detalhadas, permitindo que o funcionamento do universo fosse entendido de uma melhor forma. 

A sistematização da concepção de ciência possibilitou que a verdade prevalecesse no mundo científico, dando um novo rumo às pesquisas sobre o movimento e diversos outros saberes. 

Suas teorias eram baseadas em evidências empíricas, ou seja, em informações concretas e observáveis. Isso contrastava com as concepções antigas que se baseavam principalmente em argumentos filosóficos. 

Sua observação casada com experimentação e formulação alcançou a construção de artefatos tecnológicos capazes de medir e calcular o fluxo dos fenômenos naturais, o que constitui a ciência moderna. 

Seu legado continua a influenciar cientistas e pesquisadores, inspirando-os a buscar a verdade por meio de métodos científicos confiáveis.

Você tem curiosidade sobre assuntos como este? Dê uma espiada no blog do Museu WEG e encontre mais conteúdos dedicados a cientistas famosos de nossa história.  

Fontes:

Transformação de Galileu – Infopédia
As transformações de Galileu – UFSC
Galileu, protagonista da revolução científica – National Greographic

Hidrostática: entenda os princípios de Pascal e Arquimedes e o teorema de Stevin

Conheça os conceitos de hidrostática e mergulhe nos princípios de Pascal e Arquimedes e o teorema de Stevin.

10 de agosto de 2023
...

hidrostática, ramo da física dedicado ao estudo dos fluidos em equilíbrio, oferece um olhar fascinante sobre os fenômenos que ocorrem no mundo líquido ao nosso redor. 

Compreender os princípios fundamentais por trás desses fenômenos nos permite desvendar desde a pressão exercida por fluidos confinados até a flutuabilidade dos objetos imersos.

Neste post blog, vamos explorar os conceitos fundamentais da hidrostática, além de compreender os princípios de Pascal e Arquimedes e o teorema de Stevin. Prepare-se para mergulhar nesse universo de conhecimento.

O que é hidrostática?

A hidrostática é um ramo da física que estuda os fluidos em repouso, ou seja, quando não há movimento. 

É graças a ela que é possível compreender o comportamento de líquidos e gases sob diferentes condições.

Para entender a hidrostática, é preciso compreender os seguintes conceitos: pressão, transmissão de pressão em fluidos, empuxo e variação.

Conceitos principais da hidrostática

Mergulhando mais afundo no conceito de hidrostática, nos deparamos com alguns termos de grande relevância para o estudo desta temática e, para ficar mais fácil o seu entendimento, explicaremos a seguir, de forma simples, o que significa cada um.

1. Pressão

A pressão é a força exercida por um fluido sobre uma determinada área. De forma resumida, a pressão é como uma força “espalhada”, onde a área aplicada é totalmente influente na quantidade de força sentida. 

Imagine que você esteja empurrando uma das paredes de uma piscina de criança, como a área é pequena, a pressão será ainda maior. Porém, se você empurrar a parede de uma piscina olímpica, a pressão se tornará muito menor. 

Na prática, a pressão é a força que um fluido (como a água ou o ar) exerce sobre uma área específica. Para calcular a pressão, você divide a força aplicada pela área em que ela atua. Quanto maior a força exercida ou menor a área, maior será a pressão.

Esse conceito é essencial para áreas como a engenharia hidráulica, possibilitando a projeção de sistemas mais eficientes e seguros que possibilitem transmitir força e controlar movimentos.

2. Transmissão de pressão em fluidos

Imagine que você tem um balão cheio de água e você pressiona uma parte dele com o dedo. 

Você perceberá que a pressão que exerceu não fica apenas no ponto em que você tocou, mas se espalha por todo o balão. Isso ocorre porque a pressão em um fluido é transmitida igualmente em todas as direções.

Um exemplo prático da utilização deste conceito está na construção de barragens. Quando a água enche o reservatório, ela exerce uma pressão hidrostática sobre as paredes da barragem. 

Graças à transmissão de pressão, essa pressão hidrostática é distribuída de maneira uniforme por toda a estrutura da barragem. 

Isso reforça que este princípio é fundamental na engenharia civil, especialmente na construção de barragens, garantindo a segurança e estabilidade dessas estruturas.

3. Empuxo

Sabe quando você pula na piscina e é “puxado” para cima? Isso é o empuxo. 

O empuxo depende de duas coisas: a densidade do fluido e o volume de fluido que o objeto desloca. Quanto maior a densidade do fluido, maior será o empuxo. Isso significa que quanto mais do objeto estiver imerso no fluido, maior será o empuxo.

Um exemplo prático do empuxo é o comportamento dos objetos flutuantes em um líquido, como um barco navegando sobre a água. 

O barco é projetado para ter um formato que empurra uma grande quantidade de água para baixo enquanto flutua. O empuxo que a água exerce sobre o barco ajuda a mantê-lo flutuando, mesmo sendo um objeto pesado.

4. Variação

A variação de pressão ocorre quando há diferença de pressão entre dois pontos em um mesmo fluido que está parado. Essa diferença de pressão é diretamente proporcional à diferença de altura vertical entre esses pontos e à densidade do fluido. 

Imagine um cano com água dentro. Se tivermos um ponto mais alto no cano e outro mais baixo, haverá uma diferença de altura entre eles. 

Essa diferença de altura influencia diretamente na diferença de pressão entre os dois pontos. Quanto maior a densidade do fluido, maior será a variação de pressão entre os pontos.

Na prática, a variação de pressão é aplicada em sistemas hidráulicos, que são sistemas que utilizam líquidos para transmitir força e energia. 

Agora que você já está por dentro dos principais conceitos de hidrostática, vamos entender os famosos princípios e o teorema deste tema.

Princípio de Pascal

O Princípio de Pascal nos diz que quando aplicamos pressão em um fluido que não pode ser comprimido, essa pressão é transmitida igualmente para todas as direções.

Isso significa que qualquer mudança de pressão aplicada em um ponto de um fluido confinado se propaga igualmente em todas as direções, sem perdas significativas. 

Esse princípio é fundamental para entender o funcionamento de sistemas hidráulicos, como freios de carros, macacos hidráulicos e prensas, que se baseiam na transmissão da pressão para gerar força e movimento.

A pressão se propaga uniformemente em todas as direções, o que se resume na seguinte fórmula: 

P₁ / A₁ = P₂ / A₂

NOMENCLATURA

P₁ = Pressão aplicada na primeira área

A₁ = Área correspondente à primeira pressão aplicada 

P₂ = Pressão resultante na segunda área

A₂ = Área correspondente à segunda pressão resultante

O Princípio de Pascal desempenha um papel crucial em nossa compreensão da pressão e sua aplicação prática na criação de máquinas e dispositivos úteis em várias áreas industriais.

Princípio de Arquimedes

O princípio de Arquimedes, estabelece que um objeto imerso em um fluido recebe um empuxo verticalmente para cima, igual ao peso do fluido deslocado pelo objeto. Em outras palavras, o princípio explica por que um objeto flutua ou afunda em um fluido. 

Se o peso do objeto for menor do que o empuxo exercido pelo fluido, o objeto flutua. Caso contrário, o objeto afunda. Ele é fundamental para entender a flutuação de barcos, o funcionamento de submarinos e até mesmo o equilíbrio do corpo humano imerso na água.

Sabe aquela sensação de flutuar que você sente ao entrar em uma piscina? Este é o empuxo agindo em você. A fórmula que representa essa força é:

E = ρ * V * g

NOMENCLATURA

E = Empuxo 

ρ = Densidade do fluido 

V = Volume de fluido deslocado pelo objeto 

g = Aceleração da gravidade 

Este princípio é aplicado em diversas áreas, como na construção de navios e submarinos, pois nos ajuda a entender como essas estruturas flutuam e se movimentam na água.

Teorema de Stevin

O teorema de Stevin, descreve a relação entre a pressão hidrostática e a altura de um fluido em repouso. Segundo ele, a pressão exercida por um fluido em um ponto depende apenas da altura do fluido acima desse ponto, e não do formato do recipiente ou da área de superfície. 

Em outras palavras, a pressão aumenta proporcionalmente à profundidade do fluido. Isso significa que quanto maior a altura do fluido, maior será a pressão exercida. 

O teorema de Stevin é importante para entender fenômenos como a pressão atmosférica, o funcionamento de barragens e o equilíbrio de líquidos em recipientes conectados em diferentes alturas. Essa relação pode ser expressa pela fórmula:

ΔP = ρ * g * Δh

NOMENCLATURA

ΔP = Variação da pressão

ρ = Pressão absoluta 

g = Gravidade 

Δh = Variação de altura

Um grande exemplo do Princípio de Stevin aplicado é o sistema hidráulico das casas. 

Para continuar aprofundando seus conhecimentos, não deixe de procurar pela palavra-chave “ENEM” em nosso blog, onde você encontrará mais conteúdos relevantes sobre física e outros assuntos cobrados nos vestibulares.

Continue explorando o blog do Museu WEG e desvende os segredos da ciência e da tecnologia. Ainda não está seguindo o Museu WEG no Instagram? Siga agora.

Fontes:

Hidrostática – Brasil Escola
Hidrostática – Toda matéria
Hidrostática – Conceitos, Stevin e Pascal

Conheça 5 canais de ciência para se inscrever no YouTube

Aprender se divertindo é mais entusiasmante para você e eficaz para o seu cérebro. Justamente por isso que tem se…

22 de junho de 2023
...

Aprender se divertindo é mais entusiasmante para você e eficaz para o seu cérebro. Justamente por isso que tem se popularizado conteúdos criativos e divertidos em redes sociais, como canais de ciência no YouTube, no TikTok, no Instagram e em outras plataformas. 

Segundo Adele Diamond, professora de neurociência cognitiva na Universidade da Colúmbia Britânica, o aprendizado por meio de atividades lúdicas e de sociabilização é muito mais eficiente que um aprendizado “passivo”, no qual a pessoa apenas escuta e reproduz. 

Como educar de maneira divertida é com a gente mesmo, nesta matéria, nós separamos 5 canais do YouTube para se inscrever, acompanhar e aprender ciência.

Canais do YouTube para se inscrever e aprender sobre ciência

Confira a lista dos principais canais de ciência e tecnologia no Youtube que você pode acompanhar. 

Canal Nerdologia

O canal Nerdologia no YouTube está no ar desde 2011, sendo um dos mais queridos dos estudantes. No início, o canal apresentava uma análise nerd de filmes e, hoje, se tornou uma grande referência para o estudo de biologia, matemática, física, química e ciência.

O grande diferencial desse canal está na sua forma criativa de ensinar, sempre usando um estilo “Draw My Life” adaptado, abordando os conteúdos por meio de desenhos e palavras-chave, misturando os conteúdos científicos com o mundo dos cinemas, quadrinhos e games.

Fique ligado, o Nerdologia lança um vídeo novo todas as terças e quintas no horário das 11 horas da manhã. 

Ciência Todo Dia

O jovem catarinense Pedro Loos, estudante de Engenharia Elétrica na UFSC, não só é um amante de cálculos como também é o criador de um dos maiores canais de ciência do Brasil: o Ciência Todo Dia

O canal apresenta de modo superdivertido, fácil de entender e simplificado vários assuntos complexos do mundo da ciência, mas com itens do cotidiano, trazendo a física para o dia a dia das pessoas. 

Se você gosta de teorias científicas e de viajar pelo espaço sideral com temas inovadores, inscreva-se neste canal.

Manual do Mundo

Talvez este seja o canal que você já esperava ver por aqui. O Manual do Mundo é um canal que ensina de maneira divertida e interessante como a física atua ao nosso redor. 

Além de explicações consistentes e de assuntos mais técnicos, ele ensina como realizar experiências e criar experimentos na prática incentivando o pensamento científico de modo simplificado.

É o canal perfeito dos curiosos de plantão, sempre trazendo à tona assuntos ultra criativos em primeira mão.

Ciência Sem Fim

Está procurando um conteúdo em estilo podcast, mas que dê para ver os bastidores dele? O canal Ciência Sem Fim é a sua melhor opção.

Utilizando o estilo de entrevista, os vídeos e os conteúdos produzidos trazem convidados especiais para falarem sobre temas voltados ao mundo da ciência e da tecnologia. 

Se você gosta de se atualizar sobre curiosidades científicas do Brasil e do mundo, mas quer ter a possibilidade de ver ou apenas ouvir, o estilo de conversa do canal Ciência Sem Fim é a melhor opção para você.

Olá, Ciência!

Chegamos ao fim da nossa lista de dicas para você aprender ciência de uma forma divertida. Para fechar com chave de ouro, indicamos o canal Olá, Ciência!, que apresenta conteúdos sérios e importantes sobre o mundo da ciência, mas mantendo sempre o tom bem-humorado. 

O canal traz temas que facilitam o cuidado com a saúde trazendo à tona explicações científicas sobre doenças e, de modo geral, apresenta as novidades do mundo da tecnologia e da ciência. 

Se você prefere um conteúdo mais consistente e com maior seriedade nas informações abordadas, esse canal precisa estar no seu radar. 

Já está indo? Aproveite e dê uma olhada nas matérias do Blog do Museu WEG, assim você encontra mais conteúdos descontraídos para aprender ciência. 

Não se esqueça de seguir o Museu WEG no Instagram e no Youtube. Lá você sempre será avisado quando tivermos um conteúdo novo por aqui.


Fontes:
Nerdologia – Youtube
Ciência Todo Dia – YoutubeManual do Mundo – Youtube
Ciência Sem Fim – Youtube
Olá, Ciência! – Youtube

Quais são as 3 Leis de Kepler?

Saiba como as 3 leis de Kepler revolucionaram a astronomia e a compreensão do movimento dos planetas.

Johannes Kepler foi um matemático e astrônomo alemão que contribuiu significativamente para a compreensão do movimento dos planetas e para o desenvolvimento da astronomia moderna.

Alguns pensadores da época acreditavam que a Terra era o centro de todo o Universo, conhecido como Geocentrismo, e ficava parada enquanto o sol girava ao redor dela. Naquela época, a percepção religiosa era a única verdade.

Posteriormente, surgiu a ideia de que, na verdade, o Sol estivesse no centro e a Terra que era responsável por percorrer ao seu redor (Heliocentrismo). Mesmo que essa ideia fizesse muito mais sentido, na Idade Média, essa opinião ainda não era bem aceita pela igreja. 

Foi aceita quando o matemático Johannes Kepler provou, por meio de seus cálculos, que o modelo Heliocêntrico era o mais correto. Por meio desses estudos, ele então publicou as 3 Leis de Kepler

No conteúdo a seguir, você conhecerá um pouco mais sobre ele e entenderá as leis que ele instituiu a partir do seu estudo.

Quem foi Johannes Kepler?

Astrônomo e matemático alemão, Johannes Kepler nasceu em 1571. Auxiliar de Tycho Brahe, grande nome da astronomia da época, o professor Kepler assumiu os estudos de seu mentor após sua morte e assim começou a revolucionar o mundo da astronomia. 

Em 1609, publicou o livro Astronomia Nova, no qual se encontram suas duas primeiras leis e, em 1619, publicou seu maior trabalho, Harmonia do Mundo, no qual apresenta sua terceira e última lei. 

As 3 Leis de Kepler

Johannes Kepler trouxe para a ciência um estudo mais aprofundado do que Tycho Brahe, Ptolomeu e Nicolau Copérnico já vinham pesquisando anteriormente. 

Isso aconteceu após Kepler perceber que a velocidade orbital dos planetas ao redor da Terra não era constante, concluindo que a órbita dos planetas, na verdade, era elíptica e não perfeitamente circular. 

As 3 Leis de Kepler são destinadas ao movimento planetário, sendo definidas como Lei das Órbitas Elípticas (1), Lei das Áreas (2) e, por fim, Lei dos Períodos (3). Saiba mais sobre elas!

1ª Lei de Kepler: Lei das Órbitas Elípticas

A 1ª Lei de Kepler diz respeito ao formato das órbitas dos planetas que giram ao redor do Sol. Kepler deduziu que os planetas não giram em uma linha perfeitamente redonda ao redor do Sol, e sim de uma linha elipse, quase um desenho de um ovo.

Para ficar mais claro, desenhe um ovo em uma folha. Dentro do ovo, perto da borda superior, desenhe um sol e, exatamente na linha da borda inferior, desenhe a Terra. Pronto, agora você tem uma forma de visualizar o que estamos falando por aqui. 

O que é possível perceber com a 1ª Lei de Kepler é que, em determinados momentos, os planetas estarão mais afastados do Sol (conhecido como ponto Afélio), enquanto em outros eles estarão mais perto (conhecido como ponto Periélio).

Lei das Órbitas Elípticas: dica para o ENEM

Nos vestibulares, geralmente há uma pegadinha dizendo que, quando a Terra está no ponto Afélio, ela está no inverno e, quando ela está no ponto Periélio, ela está no verão. 

Isso está errado, fique atento! O que determina as estações do ano é a inclinação da Terra, e não o percurso orbital.

2ª Lei de Kepler: Lei das Áreas

Antes de aprofundar a explicação, pegue seu desenho de Ovo-Terra-Sol e faça uma linha da Terra em direção ao Sol. Agora faça mais uma Terra perto dessa primeira e mais duas Terras iguais, porém, ao lado do Sol (todas com uma linha individual que as ligue com o Sol).

Kepler definiu que a velocidade percorrida dentro dessas áreas desenhadas é sempre igual. É por isso que a Lei das Áreas diz que a velocidade do percurso dessa linha que liga a Terra com o Sol é sempre igual. 

Quanto mais perto do Sol (ponto Periélio), maior será a velocidade percorrida pelo planeta; quanto mais longe (ponto Afélio), mais devagar ele irá andar. 

Essa é a Lei que, para muitos físicos, é conhecida como a mãe da astrofísica. Além disso, essa Lei foi muito importante para que Newton descobrisse a Gravidade e, posteriormente, Einstein desenvolvesse a sua Lei da Gravidade Geral.

3ª Lei de Kepler: A Lei dos Períodos

Pegue o seu desenho de Ovo-Terra-Sol e imagine que suas Terras estejam andando pela linha do ovo. Perceba que, conforme a Terra vai caminhando, as linhas imaginárias desenhadas vão mudando de tamanho. 

Esta é a 3ª Lei de Kepler: conforme acontece o movimento orbital, a distância entre a Terra e o Sol sofre uma mudança. Quando a Terra está no Afélio, é possível ver uma distância bem grande entre ela e o Sol, mas, quando ela está no Periélio, essa distância fica bem curtinha. 

Quanto mais longe o planeta estiver do Sol (Afélio), maior será o tempo que ele levará para percorrer a órbita. Essa distância é chamada de Período. Esta é a fórmula final dessa Lei:

T²/r³=K

NOMENCLATURA:

T = Período orbital (distância entre a Terra e o Sol) 

r = Raio médio da órbita 

K: Valor constante (velocidade de todos os corpos que orbitam a Terra) 

Para descobrir o valor da constante (K), você pode seguir a seguinte fórmula:

K= 4²/GMs

NOMENCLATURA:

G = Constante da gravitação do Universo M = Massa do Sol

A Lei dos Períodos: Dica para o ENEM

Para não se perder com tantas fórmulas, você pode resumi-las em apenas uma: 

T²/R³= 4π²/GM

E aí? Curtiu este conteúdo? Então corra para o Blog do Museu WEG e encontre mais assuntos como este! Você também pode seguir o Instagram do Museu WEG para sempre ficar por dentro das novidades que saem por aqui. 

Fontes:

Leis de Kepler – InfoEscola

Leis de Kepler – Brasil Escola

Leis de Kepler: quais são? – Stoodi

Fenômenos Ondulatórios: Entenda o que são e quais os tipos existentes

Descubra a incrível ciência das ondas: entenda o que são fenômenos ondulatórios e saiba quais são os tipos existentes. Acesse agora nosso blog!

Os fenômenos ondulatórios são os princípios da física representados por ondas. Existem diversos tipos de ondas, como por exemplo, a voz humana ou o micro-ondas. 

Enquanto a voz humana emite as ondas sonoras, ondas que criam uma perturbação nas moléculas de ar que se propagam até o ouvido humano, o micro-ondas já lida com uma onda diferente, trabalhando apenas com ondas eletromagnéticas, gerando calor. 

Existem também as ondas físicas, como a de balançar uma corda, as ondas do mar, entre outros exemplos (que são cobrados no ENEM). Agora que você já entende o conceito de ondas, vamos conhecer os tipos de fenômenos ondulatórios? Continue a leitura!

Tipos de Fenômenos Ondulatórios

Os fenômenos ondulatórios são divididos em 7 tipos, mas os mais importantes (em grau de relevância para o ENEM) são 3: Reflexão, Refração e Difração. Confira!

Reflexão

A reflexão é uma onda que bate em um objeto e retorna para o seu local de origem. Para ficar mais claro, pense na última vez que você ouviu o eco da sua voz. Você falou algo, sua voz se projetou através de uma onda sonora, bateu em um obstáculo e voltou para você.

Como a onda “não mudou de meio”, a sua velocidade, a sua frequência e o seu comprimento de onda permanecem sendo os mesmos. Você pode decorar esse conceito pensando no seguinte: quando você se olha no espelho, você encontra uma imagem exata sua, ou seja, nada mudou. 

Refração

Diferente da Reflexão, a Refração acontece quando um objeto reflete uma parte da onda e deixa que outra parte dela o atravesse distorcendo a direção original. 

A grande sacada aqui é entender que, como o “meio irá mudar”, a velocidade e o comprimento de onda irão mudar mantendo apenas a frequência igual à que estava antes. 

Para ficar mais claro, pense em uma lente que reflete a luz azul. Uma pessoa que usa óculos com essas lentes geralmente vê um reflexo na cor azul em cada lente (o reflexo da luz), mas também consegue enxergar o atravessar da luz para os olhos.

Difração

O oposto de Reflexão, a Difração refere-se a uma onda que atravessa um objeto refletindo parte da energia e absorvendo uma pequena quantidade dela, enquanto a maior parte dessa onda segue o percurso normalmente. 

Ela contorna um obstáculo e, como sofre uma perturbação, gera um espalhamento das ondas. A difração “é ainda mais intensa quando o comprimento de sua onda tem valor próximo ou maior que as dimensões da fenda por onde ela está passando”. 

Para ficar claro, pense em duas pessoas conversando, uma de cada lado de um muro. Mesmo que não se vejam, ambas conseguem se ouvir, pois as ondas sonoras conseguem atravessar o muro. 

Polarização

A polarização funciona como uma peneira na qual as ondas transversais são filtradas. É como se a polarização fosse uma difração direcionada. Enquanto a difração espalha a onda, a polarização a direciona para apenas uma direção.

Dispersão

Ligada diretamente à velocidade de propagação de uma onda, a dispersão acontece quando várias ondas com velocidades diferentes se unem e geram uma onda única alterando a sua velocidade de propagação.

Interferência

Para ficar mais fácil de entender a interferência, lembre-se da cena em que Harry Potter e Lord Voldemort têm suas varinhas ligadas por dois feitiços diferentes. A interferência acontece dessa forma. 

No fim de Harry Potter e As Relíquias da Morte – Parte 2, o feitiço de Harry sobrepõe o de Voldemort exatamente como acontece com um fenômeno de interferência. 

Em palavras mais técnicas, a interferência acontece quando há uma sobreposição entre duas ou mais ondas, transformando ambas em uma onda resultante. 

Diferente da polarização, na interferência, é possível que ela seja uma onda que soma a amplitude das demais ondas (interferência construtiva) ou pode ser a diferença entre as amplitudes das ondas anteriores e a amplitude da onda unificada (interferência destrutiva).

Ressonância

A ressonância é como se fosse um amplificador de frequência no qual a frequência natural da onda receberá uma excitação que a ampliará. 

Qual é a diferença entre Fenômenos Ondulatórios Mecânicos e Eletromagnéticos?

A onda mecânica necessita de uma interferência para acontecer (como jogar uma pedra em um rio para ver as ondas), as ondas eletromagnéticas são aquelas que lidam com o eletromagnetismo (ondas de rádio). 

Em outras palavras, os fenômenos ondulatórios mecânicos “precisam de um meio para se propagar”, enquanto os fenômenos ondulatórios eletromagnéticos “não precisam, podendo se propagar até no vácuo”. 

Curtiu este conteúdo? Então dê uma conferida no Blog do Museu WEG para encontrar mais assuntos que são cobrados no ENEM. 

Você também pode seguir o Museu WEG no Instagram, lá sempre são compartilhadas pegadinhas do mundo da ciência que geralmente são usadas em vestibulares. 

Fontes:

Fenômenos ondulatórios – Globo Educação

Fenômenos Ondulatórios na Prova do Enem – InfoEnem

Fenômenos ondulatórios – Mundo Educação

Conheça 5 dinossauros do Brasil!

Explore o mundo fascinante dos dinossauros do Brasil e descubra curiosidades sobre esses gigantes pré-históricos.

O Brasil tem uma rica diversidade de dinossauros que viveram em seu território durante o período Triássico e Cretáceo, há milhões de anos.

Neste conteúdo, você viajará no tempo, conhecerá mais sobre a origem desses gigantes e conhecerá 5 dinossauros do Brasil

Como surgiram os dinossauros?

Durante a época dos dinossauros, o mundo encontrava-se no período Triássico, um momento de transição do “mundo marinho” para o “mundo semiárido”. Foi justamente durante essa mudança de clima que surgiram os primeiros dinossauros. 

Dinossauros como o Pampadromaeus Barberenai (de pouco mais de 1,5 metro), o Buriolestes Schultzi (de 1,5 metro) e o Bagualosaurus Agudoensis (de até 2,5 metros) foram os primeiros dinossauros a pisarem no mundo, tendo seus fósseis encontrados em Santa Maria (RS), aqui no Brasil. 

Os fósseis do período Triássico que foram encontrados no Brasil estão entre os mais importantes fósseis descobertos no mundo inteiro, ficando atrás de dinossauros em melhor estado de conservação (do período Cretáceo). 

Graças a esses fósseis encontrados aqui, o Brasil conquistou uma grande importância mundial quando o assunto é paleontologia.

O que sabemos sobre os dinossauros do Brasil?

Paleontólogos já identificaram pelo menos 27 espécies diferentes de dinossauros aqui no Brasil. Mas, como os continentes estavam conectados no passado, era possível que alguns dinossauros passeassem do Brasil para a Alemanha, por exemplo. 

Além disso, acredita-se que os dinossauros foram do Brasil em direção à Europa, já que na área que cobre o trajeto do Rio Grande do Sul e da Argentina encontram-se os fósseis mais antigos do mundo. 

Conheça 5 dinossauros do Brasil

Confira a seguir neste conteúdo, 5 dinossauros importantes descobertos no Brasil.

Staurikosaurus Pricei

Pequeno em tamanho, mas gigante em história! O Staurikosaurus Pricei foi um dos primeiros dinossauros do mundo, sendo o primeiro descoberto no Brasil, durante o ano de 1970. 

Com 1 metro de altura e 2,5 metros de comprimento, acredita-se que este dinossauro tenha vivido durante o período Triássico aqui no Brasil, que ele tenha sido carnívoro e vivido há cerca de 227 milhões de anos. 

Pampadromaeus Barberenai

De linhagem sauropomorfos, o Pampadromaeus Barberenai é o dinossauro mais antigo descoberto no Brasil. Estima-se que tenha vivido na terra no período Triássico há 228 milhões de anos. 

Além disso, este dinossauro era de porte menor, tendo apenas 50 centímetros de altura e 1,2 metro de comprimento, sendo considerado um onívoro.

Amazonsaurus Maranhemsis

O Amazonsaurus Maranhemsis foi um dinossauro que viveu durante o período Cretáceo, há cerca de 100 milhões de anos, com 3 metros de altura, 10 metros de comprimento, e pesava cerca de 10 toneladas. Apesar do seu grande porte, ele era um dinossauro herbívoro.

Pycnonemosaurus Nevesi

O Pycnonemosaurus Nevesi foi um gigante carnívoro de 3,5 metros de altura, 9 metros de comprimento e pesava 2 toneladas. Se você está achando pequeno para ser assustador, saiba que este dinossauro se alimentava de dinossauros ainda maiores do que ele.

Referente à sua idade, estima-se que tenha vivido no período Cretáceo, há 70 milhões de anos.

Oxalaia Quilombensis

O Oxalaia Quilombensis é o maior carnívoro encontrado no Brasil, com 4,5 metros de altura, 14 metros de comprimento e peso de 7 toneladas. Este gigante viveu no período Cretáceo há 96 milhões de anos. 

Esses foram cinco dos diversos dinossauros encontrados no Brasil. Novas descobertas continuam sendo feitas por paleontólogos em todo o país, e, em breve, poderemos ter novos fósseis contribuindo com a história do país. 

E aí? Curtiu este conteúdo? Então dá uma conferida no Blog do Museu WEG, lá você encontra mais assuntos como este! 

Não se esqueça de seguir o Museu WEG no Instagram, assim você sempre será notificado quando surgirem novos posts por aqui.

Fontes:

Brasil é berço de pelo menos 27 espécies de dinossauros – Impa

Dinossauros do Brasil – Terra

Os 6 maiores dinossauros encontrados no Brasil – Mega Curioso

Dia Mundial do Combate ao Câncer: estamos perto da cura do câncer?

Saiba mais sobre as pesquisas e os avanços na busca pela cura do câncer e como a ciência está trabalhando para transformar essa realidade.

A cura do câncer está cada vez mais próxima. A ciência vem avançando cada vez mais com pesquisas e tratamentos eficazes para certos tipos de câncer, como de próstata, tireoide e melanoma, por exemplo.

Por ser uma doença complexa, ela é um desafio importante na medicina e envolve uma abordagem multidisciplinar que inclui a colaboração de médicos, pesquisadores e profissionais de saúde em todo o mundo.

Muito além do diagnóstico precoce, a ciência já vem estudando novas estratégias promissoras para encontrar a cura do câncer, e o que está sendo descoberto você verá neste conteúdo.

A luta contra o câncer

A cura do câncer conta com décadas de estudos em busca de uma cura definitiva, e estamos bem perto de descobri-la. Variados estudos de áreas diversas do mundo vêm mostrando resultados inovadores e avançados sobre essa cura.

“A cura” também é um termo que depende do ponto de vista. Pois, se olharmos do ponto de vista literal da ciência, ainda não a encontramos. Mas, se olharmos pelo ponto de vista da qualidade e da prolongação da vida de um paciente oncológico que mantém acompanhamento e tratamento contínuos, ela já foi encontrada. 

“Existe cura para o câncer. Ela depende principalmente do estágio em que a doença é diagnosticada. Mas também está atrelada ao tipo de tumor. Alguns têm altas taxas de cura, mesmo quando diagnosticados em fases avançadas”, comenta Lilian Arruda Barros, coordenadora adjunta do Departamento de Oncologia do IBCC.

Os avanços da ciência

Confira a seguir as maiores descobertas sobre a cura do câncer que temos até agora no mundo da ciência.

Vírus que destrói o câncer

O Instituto de Pesquisa do Câncer do Royal Marsden NHS Foundation Trust trabalha em uma vacina desenvolvida com base em uma forma enfraquecida do vírus do herpes (herpes simplex) modificado para eliminar tumores. 

Segundo cientistas do Reino Unido, o estudo se mostra promissor nos primeiros testes em humanos, já que o câncer de um paciente sumiu por completo e o de outros pacientes foi reduzido drasticamente em tamanho. 

Vacina para câncer cerebral

Ainda na primeira etapa de avaliação, esta vacina foi baseada em engenharia genética para realizar uma “cirurgia molecular”, ou seja, para que haja uma reprogramação genética nas células do tumor. 

É como se essa vacina desse superpoderes para que as demais células do corpo do paciente possam combater as cancerígenas. 

Trata-se de um tratamento altamente individualizado que se adapta ao DNA das células tumorais de cada paciente e tem sua pesquisa realizada pelos pesquisadores do Brigham and Women’s Hospital nos EUA. 

Uso de células CAR-T

A Anvisa já aprovou uma terapia à base de células CAR-T produzida pela farmacêutica Novartis, para auxiliar no tratamento de leucemia linfoblástica aguda e linfoma difuso de grandes células B.

Assim como o tratamento dos pesquisadores do Brigham and Women’s Hospital, essa terapia é personalizada para cada indivíduo. Com base no sistema imunológico, as células T do paciente são extraídas e reprogramadas para combater células cancerígenas. 

Cirurgia robótica para curar o câncer

Esta cirurgia consiste em realizar a retirada completa do tumor, sem que sejam deixados resíduos da doença no organismo. 

Essa alternativa pode possibilitar que cânceres em estágio inicial sejam curados completamente e que cânceres mais avançados sejam reduzidos para o tratamento em quimioterapia, melhorando a qualidade de vida do paciente. 

É muito segura para o paciente, requer um treinamento especializado e regulamentado pelo Conselho Federal de Medicina

Quem é Nisa Leung e qual é a sua ligação com a luta contra o câncer?

Nisa Leung, presente na lista Forbes 50 Over 50, é uma grande investidora do mundo da saúde na China e, assim como todos os grandes cientistas, vem possibilitando que os estudos contra o câncer continuem sendo desenvolvidos. 

Ela busca auxiliar não só no desenvolvimento de uma cura para o câncer, mas também de diversas outras doenças. Sua meta é possibilitar que a qualidade de vida das pessoas aumente ainda mais com o avanço da ciência. 

Mesmo que a luta e os avanços estejam tão promissores para que seja encontrada a cura contra o câncer, a maior possibilidade de cura ainda é o diagnóstico precoce. 

Gostou deste conteúdo? No Instagram do museu WEG, tem diversos conteúdos rápidos, divertidos, curiosos e inovadores para você conferir.

Fontes:

O vírus que destrói câncer e pode revolucionar tratamento de tumores avançados, segundo cientistas – BBC News

A promessa de uma nova vacina para combater o câncer – Veja Saúde

A cura do câncer já existe? – Oswaldo Cruz

O que é Fusão Nuclear e por que ela pode ser o futuro da Energia Limpa?

Neste conteúdo você irá descobrir o que é fusão nuclear e por que essa alternativa é mais viável para o meio ambiente.

Já pensou em unir núcleos de um átomo e criar um núcleo ainda maior e mais estável? Esse é o princípio da Fusão Nuclear, que funde dois núcleos atômicos em um! Essa energia é tão poderosa que dá vida às estrelas, como é o caso do nosso Sol. 

Agora imagine toda a energia do Sol sendo produzida aqui na Terra. 

Cientistas da Califórnia descobriram uma forma de produzir energia limpa por meio da Fusão Nuclear, que vem sendo chamado de Santo Graal da produção energética mundial. 

Quer saber mais sobre a invenção que irá revolucionar o mundo da geração de energia limpa? Então primeiro vamos aprender o que é Fusão Nuclear e alguns conceitos básicos sobre ela.

O que é Fusão Nuclear?

A fusão nuclear é uma união de dois núcleos atômicos através de uma colisão. 

Mas, para acontecer uma fusão de átomos, é preciso haver uma energia cinética muito forte para que ela ultrapasse a repulsão natural desses núcleos. 

Quer um exemplo real de fusão nuclear? Então observe o nosso Sol (não olhe para ele diretamente, só estude sobre, viu?).

A energia gerada e liberada pelo Sol é milhões de vezes mais forte que uma reação química comum. Justamente por isso, muitos cientistas já vinham procurando um meio de utilizar essa energia para produzir uma alternativa limpa para a sociedade, reduzindo assim a poluição energética no mundo. 

Antes de falarmos sobre essa tão inovadora descoberta, você sabe a diferença entre Fusão e Fissão Nuclear? Vamos falar sobre isso a seguir.

Fusão Nuclear VS Fissão Nuclear

A fissão nuclear é atualmente utilizada na geração de energia de usinas elétricas, porém, diferente da fusão nuclear, ela não é nada limpa. A fissão nuclear é tão poluente que gera resíduos que podem durar por toda a eternidade. 

Mas, por que inventaram isso? Porque, na natureza, quando um átomo de urânio (um átomo pesado) entra em processo de fissão, ele libera um nêutron que gira e vai atingindo outros átomos de urânio. Em outras palavras, acontece um efeito bola de neve. 

Porém, em uma usina, esse processo libera muito calor, fervendo a água para que seu vapor gire uma turbina, liberando contaminação radioativa para o meio ambiente. 

Já a geração de energia através da fusão nuclear poluiria bem menos o meio ambiente, já que ela acontece através da junção de átomos leves. Diferente da fissão nuclear, a fusão produz muito mais energia e descarta pequenas quantidades de resíduos radioativos de curta duração. 

O mais legal do processo de fusão nuclear está no fato de que ele não produz gases de efeito estufa, e não prejudica o clima do planeta. Para haver uma fusão nuclear, é preciso contar com alta pressão e temperatura. 

O Santo Graal da energia limpa

Cientistas da Califórnia desenvolveram recentemente um reator de fusão nuclear que gera mais energia do que a gasta, o que ainda não era uma realidade. 

Essa invenção não só acelerou as pesquisas sobre o assunto como, também, possibilitou que a energia gerada por fusão nuclear pudesse ser uma alternativa de energia limpa para o planeta. Mas, esse reator ainda está sendo aperfeiçoado, já que, por enquanto, só conseguiu gerar energia suficiente para ligar uma televisão. 

Os cientistas descobriram que se colocassem uma pequena quantidade de hidrogênio em um grão de pimenta e usassem um laser de 192 feixes para aquecê-lo, seria possível aquecer a pequena cápsula em até 100 milhões de graus Celsius, uma temperatura que ultrapassa o centro do Sol. 

A descoberta é extremamente importante para o mundo científico e, possivelmente, estamos caminhando para ainda mais perto de um mundo movido a energia limpa. Mas vale lembrar que estamos falando de um experimento que custou bilhões de dólares e que ainda está sendo aperfeiçoado, sem data para ser lançado até o momento.

Já está seguindo o Museu WEG no Instagram? Lá você fica por dentro de todos os novos conteúdos que saem por aqui. Você também pode acessar o Blog do Museu WEG para conferir mais matérias interessantes como esta! 

Fonte:

Fusão Nuclear – Brasil Escola

Fusão nuclear: como cientistas alcançaram ‘Santo Graal’ da energia limpa – BBC News Brasil

Qual a diferença entre fusão e fissão nuclear? – Olhar Digital

O que diz a Teoria da Relatividade Geral de Albert Einstein?

Nesse conteúdo você irá descobrir o que é a Teoria da Relatividade Geral e qual a diferença entre ela e a Teoria da relatividade Restrita.

14 de março de 2023
...

Imagina você ser tão inteligente ao ponto de propor uma teoria que mudaria o mundo!

Essa teoria não é só famosa, ela também é superimportante para o mundo da Física e para diversas descobertas que aconteceram posteriormente.

Chegou o momento de você conhecer a tão falada, representada e estudada Teoria da Relatividade Geral

Quem inventou a Teoria da Relatividade Geral?

Albert Einstein foi um célebre cientista que revolucionou o mundo da ciência (mas isso você já sabia). O físico alemão lançou não só uma grande teoria, mas sim duas em pouquíssimo tempo de diferença: as teorias da relatividade restrita e da relatividade geral. 

Aqui no blog do Museu WEG temos uma matéria que fala sobre a vida deste grande cientista, para saber detalhes e curiosidades, é só clicar aqui.

A primeira teoria de Einstein levou uma década para ser elaborada. Isso se deve a sua complexidade, já que ia contra a Teoria de Isaac Newton, aceita há 200 anos, de que o espaço e o tempo eram conceitos independentes, defendendo que o tempo fluía livremente enquanto o espaço permanecia o mesmo. 

Durante sua vida, com a publicação da Teoria da Relatividade e mais artigos que se tornariam fundamentais para a Física Moderna, Einstein recebeu o Nobel de Física. 

Além de um extraordinário físico, Albert Einstein também lutou pela paz mundial, pela justiça e pela liberdade.

Qual a diferença entre a Teoria da Relatividade Restrita e a Teoria da Relatividade Geral?

Einstein não só sugeriu uma teoria revolucionária, ele também sugeriu a teoria que mudaria o mundo da ciência! 

Após uma década de pesquisas destinadas à busca pela verdade, ele chegou à Teoria da Relatividade Restrita, a primeira de suas duas grandes teorias. 

A Teoria Relatividade Restrita era direcionada ao movimento uniforme de corpos no espaço, sem ligar o movimento ao poder gravitacional. 

Essa teoria defendia que espaço e tempo não são duas coisas diferentes, mas, sim, duas direções diferentes das quatro dimensões do espaço-tempo, tem três dimensões de espaço e uma de dimensão de tempo, totalizando quatro dimensões.

Ou seja, se você for mais rápido no espaço, o tempo passará mais devagar para você. Legal, né?

Foi com essa teoria que Einstein trouxe para o mundo da ciência a hipótese de que a velocidade da luz é sempre constante, mesmo para objetos que conseguissem alcançar uma velocidade parecida. 

Em outras palavras, mesmo que você viajasse quase na velocidade da luz, você ainda veria a luz sendo propagada em sua velocidade original.  Sendo assim, Albert Einstein chegou na famosa fórmula da relatividade.

Fórmula da Relatividade

E = m . c²

Tabelinha da nomenclatura:

E = Energia 

m = Massa do objeto 

c = Velocidade da luz

Mas ele logo percebeu haver uma brecha na solução elaborada e passou a analisar de outra forma.  

No vácuo, a luz mantinha sua velocidade constante e permanecia em um referencial inercial local; porém, quando a luz passa por perto de um corpo de massa elevada, há uma variação na sua velocidade.

Então Einstein teve uma nova perspectiva sobre a Lei da Gravitação Universal de Isaac Newton: gravidade é aceleração, sem forças envolvidas. A gravidade agindo sobre um corpo, então, demonstra a aceleração que um corpo menor terá ao passar naquele espaço. 

Para entender melhor, pense em uma tela de pano deitada horizontalmente: se você colocar uma bolinha de algodão para rodar em cima do pano, sem nenhum peso extra acrescentado, ela não deformará o espaço em que está localizada (no caso, a tela de pano), ela simplesmente andará em linha reta. 

Porém, se você acrescentar uma bola de vôlei no centro da tela, com certo peso, verá que ela esticará as bordas da tela e irá “afundar” no tecido. 

Nesse caso, quando você passar a bolinha de gude novamente, sua aceleração será afetada pelo formato da tela e ela desviará o percurso pela curvatura do tecido.

Em suma, a Teoria da Relatividade Geral é a matéria dizendo para o espaço como se curvar e a curva do espaço dizendo para as outras matérias menores como se moverem por ali.

Curtiu esse conteúdo? Então dá uma espiada no Blog do Museu WEG, lá você encontra mais materiais como esse! Siga também o Museu WEG no Instagram, assim você sempre será avisado quando sair um novo conteúdo por aqui.

Fontes:

Teoria da Relatividade Geral – Brasil Escola

Como a teoria da Relatividade Geral de Einstein explica (quase) tudo – Revista Galileu

Teoria da relatividade: o que é, quem criou e mais! – Stoodi