Tag: física

Como funciona o helicóptero?

Descubra como funciona a aeronave mais versátil e amplamente utilizada no mundo.

Podemos dizer que o helicóptero é um avião com asas móveis: as hélices (que também chamamos de rotor). E, diferentemente do avião, que só se desloca para a frente, ele pode pairar no ar, fazer manobras suaves para qualquer direção e até andar de ré, porque suas pás estão sempre em movimento. Para que esse tipo de manobra saia bem, não é nada simples, já que a tendência natural do impulso provocado pela rotação das hélices (o chamado torque) seria fazer a nave sair rodopiando como um pião. É por isso que existe uma segunda hélice que gira em pé e produz uma força lateral: para contrabalancear o rotor da cauda e deixar seu “corpo” parado enquanto as hélices giram.

Como funcionam as hélices do helicóptero?

  1. As lâminas têm a forma de perfis aéreos (asas de avião com perfil curvo), de modo que geram elevação ao girar.
  2. Cada lâmina pode girar sobre uma dobradiça emplumada.
  3. Os links verticais  empurram as lâminas para cima e para baixo, tornando-os giratórios. Os links de passo movem-se para cima e para baixo, de acordo com o ângulo das placas swash.
  4. O mastro do rotor (um eixo central conectado ao motor pela transmissão) faz girar todo o conjunto da lâmina.
  5. A tampa do cubo do rotor (acima dos rotores) ajuda a reduzir o arrasto aerodinâmico.
  6. Existem dois motores turbo-eixo, um em cada lado dos rotores. Se um motor falhar, ainda deve haver energia suficiente do outro motor para aterrar o helicóptero com segurança.

Por que o helicóptero não sai rodopiando?

“Para toda ação, sempre há uma reação oposta de mesma intensidade.” A Terceira Lei de Newton pode ser aplicada de forma simples no funcionamento de um helicóptero. 

Seguindo a lei, quando a hélice principal começa a girar (ação), a fuselagem tende a girar em igual intensidade no sentido oposto (reação). Essa força é conhecida como torque.

Para combater essa reação, Igor Sikorsky, o criador do helicóptero, teve a genialidade de instalar uma hélice na cauda da nave, que também fornece controle direcional. O funcionamento da hélice da cauda é semelhante ao da principal, exceto que elas podem ser inclinadas. O movimento da hélice na cauda evita que o torque comprometa o voo da aeronave, fazendo com que o piloto tenha condições necessárias para fazer movimentos de emergência.

A aeronave mais versátil e amplamente utilizada no mundo

Ao longo dos anos, as inovações em design de helicópteros tornaram as máquinas mais seguras, mais confiáveis ​​e fáceis de controlar. Por possuírem atributos diferentes do avião, por exemplo, eles podem ser utilizados em áreas congestionadas ou isoladas em que as aeronaves de asa fixa não seriam capazes de pousar ou decolar. A capacidade de pairar por longos períodos de tempo e de decolagem e aterragem vertical permite aos helicópteros realizar tarefas que outras aeronaves não são capazes.

Por isso, hoje, os helicópteros são utilizados para fins militares e civis, como transporte de tropas, apoio de infantaria, combate a incêndios, resgates, operações entre navios e equipes entre plataformas petrolíferas, transporte de empresários, evacuações sanitárias, guindaste aéreo, polícia e vigilância de civis, transporte de bens etc.

Fonte: Canal Piloto

A relação entre música, física e matemática

Nesse texto vamos explicar um pouquinho sobre essa antiga relação.

A matemática e a música estão naturalmente presentes no nosso dia a dia, são tantas atividades cotidianas movidas pelo som e pelos cálculos, que não nos damos conta da sua presença. A relação entre as duas áreas vai muito além dos verbos — contar e cantar —, nesse texto vamos explicar um pouquinho sobre essa antiga relação, para se ter uma ideia, os gregos, no século VI a.C. consideravam que a música encerrava uma aritmética oculta.

Para entender melhor, vamos ver alguns conceitos básicos da música:

 

Música

Chamamos de “acordes” três notas executadas simultaneamente em um instrumento musical. Os acordes são divididos em consonantes ou dissonantes, sendo que os primeiros são normalmente aprendidos antes de tudo, e os segundos, são usados por instrumentistas que já possuem mais conhecimento, prática e técnicas avançadas. Os acordes consonantes são agradáveis aos ouvidos e são suficientes para executar qualquer música, já os dissonantes parecem fora de combinação melódica, são mais complexos e enriquecem a composição.

 

A relação com a matemática

A matemática é utilizada pelos estudiosos da música como uma forma de facilitar suas teorias a respeito da estruturação musical, além de comunicar novas maneiras de ouvir música. Da matemática, são usadas na música, a teoria dos conjuntos, a álgebra abstrata e a teoria dos números. Para compreender essa relação, imagine que compositores já utilizaram em seus trabalhos as escalas musicais, a proporção áurea e o número de Fibonacci.

Music, Violin, Classical Music.

Uma relação muito antiga.

Apesar de terem ligação, a matemática e a música são estudadas de maneira separada há muito tempo, mas sempre tiverem uma relação entre si. As escalas musicais foram expressadas de maneiras diferentes, variando de acordo com os povos. Filósofos como Erastóstones e Pitágoras, por exemplo, criaram escalas e formas de organizá-las, já os gregos faziam essas escalas baseadas nos tetracordes, com sete tons. Com os filósofos, a afinação que usava recursos de quinta passou a ser utilizada, além de usar os números entre 1 e 4 para gerar as notas de uma escala.

Além disso, quando falamos em ritmo musical, estamos associando o ritmo ao tempo e suas divisões, além das frequências, sons e timbres. Chamamos de compassos os períodos que se repetem dentro de uma música – ou seja, são tempos que se repetem. Você pode assistir ao documentário abaixo para entender essa relação de uma forma simples e didática:

“O primeiro experimento científico da matemática foi numa arte: a música.” 

 

A física na música

É a frequência do som que define uma nota musical. Essa frequência é uma repetição com referência de tempo. Por exemplo, imagine uma roda de bicicleta girando, se essa roda completa uma volta em 1 segundo, dizemos que a frequência da roda é “uma volta por segundo”, ou “um Hertz”. Hertz é o nome dado para representar a unidade de frequência, geralmente aparece abreviado como “Hz”. Se essa roda, por exemplo, completasse 10 voltas em 1 segundo, sua frequência seria 10 Hertz (10 Hz).

Bem, e o que isso tem a ver com a música? É que o som é uma onda e essa onda oscila com certa frequência. Se uma onda sonora completa uma oscilação em 1 segundo, sua frequência é de 1 Hz. Se ela completa 10 oscilações em 1 segundo, sua frequência é de 10 Hz. Para cada frequência há um som diferente (uma nota diferente). A nota Lá, por exemplo, corresponde a uma frequência de 440 Hz.

Quando uma frequência é multiplicada por 2, a nota permanece a mesma. Por exemplo, a nota Lá (440 Hz) multiplicada por 2 é 880 Hz, que continua sendo uma nota Lá, mas uma oitava acima. Se o objetivo é baixar uma oitava, bastaria dividir por 2. Ou seja, uma nota e sua respectiva oitava mantêm uma relação de ½.

 Na Grécia Antiga, Pitágoras fez descobertas muito importantes para a matemática (e para a música). Por exemplo, ele descobriu que ao esticar uma corda, prendê-la nas suas extremidades e tocá-la, faz com que ela vibre. Até aí, bem simples, né?

corda1

Ele também decidiu dividir essa corda em duas partes e tocou cada extremidade novamente. O som produzido era exatamente o mesmo, só que mais agudo (pois era a mesma nota uma oitava acima):

 

 corda2

 

Mas Pitágoras continuou seu experimento. Decidiu analisar como ficaria o som se a corda fosse dividida em 3 partes:

corda3

Um novo som surgiu, diferente do anterior. Pitágoras percebeu que não era a mesma nota uma oitava acima, mas uma nota diferente, que precisava receber outro nome. Apesar de ser diferente, o som combinava com o anterior, criando uma harmonia agradável ao ouvido.

Assim, ele continuou fazendo subdivisões e foi combinando os sons matematicamente criando escalas que, mais tarde, estimularam a criação de instrumentos musicais capazes de reproduzir essas escalas.

Muitos povos criaram suas próprias escalas musicais. O povo chinês, por exemplo, partiu da experiência de Pitágoras (utilizando cordas): eles tocaram a nota Dó em uma corda esticada e depois dividiram essa corda em 3 partes, como acabamos de mostrar. O resultado dessa divisão foi a nota Sol.

Ao observar que essas notas possuíam uma harmonia entre si, eles repetiram o procedimento a partir dessa nota Sol, dividindo novamente esse pedaço de corda em 3 partes, resultando na nota Ré, que deu origem à nota Lá, em seguida à nota Mi.

Ao repetir esse procedimento de dividir a corda em 3 partes, deu-se origem à nota Si, porém ela não soava muito bem quando tocada junto com a nota Dó (a primeira nota do experimento). As duas notas eram muito próximas uma da outra, causando certo desconforto sonoro. Por isso, os chineses terminaram suas divisões obtendo as notas Dó, Sol, Ré, Lá e Mi, deixando a nota Si de lado.

Foram essas notas que serviram de base para a música chinesa, formando uma escala de 5 notas (pentatônica). A escala pentatônica é agradável e consonante, representando muito bem a cultura oriental, que sempre foi pautada na harmonia e estabilidade.

Existem muitas outras explicações matemáticas para a construção da música, elas entram em assuntos mais avançados que necessitam um alto conhecimento matemático, como séries de Fourier e função Zeta de Riemann.

O que podemos entender é que música trabalha matematicamente, sendo resultado de uma organização numérica. E nosso cérebro é responsável por interpretar tudo isso. Nosso cérebro gosta de lógica, harmonia, gosta cálculos! Quanto mais você praticar, estudar e conhecer música, mais essa faculdade se desenvolve. =)

 

Por que nada pode viajar mais depressa que a luz?

Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.

Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.

A teoria de que nada pode viajar mais rápido do que a velocidade da luz no vácuo significa, basicamente, que nada pode ultrapassar os 299.792.458 metros por segundo ou arredondando, 300 mil km por segundo. Essa ideia foi proposta por Albert Einstein em sua Teoria da Relatividade, baseada em estudos anteriores de diversos cientistas para estabelecer que o limite de velocidade universal é o que a luz atinge quando se desloca pelo vazio do cosmos. Você sabe por quê?

 

Impossibilidade física

Isso nos leva à Teoria da Relatividade Especial de Albert Einstein, de 1905, que diz que a velocidade da luz é o que conecta o tempo e o espaço. Segundo o catedrático de Física Antonio Ruiz de Elvira, não é possível deslocar um objeto a uma velocidade superior à da luz porque, de forma simples e resumida, a única coisa capaz de mover uma partícula com massa é outra força que viaje a essa velocidade.

luz

Zunindo pelo vácuo (BBC)

De acordo com Antonio, o objeto “empurrado” acabaria ganhando massa quando submetido a grandes velocidades. E, considerando que o ganho aumentaria bastante conforme o corpo se aproximasse da velocidade da luz, isso interferiria em sua capacidade de deslocamento. Sendo assim, nenhum corpo pode viajar mais depressa do que a força que o empurra.

Segundo o que prevê a Teoria da Relatividade, o aumento de massa aconteceria rapidamente conforme a velocidade do objeto se aproximasse à da luz. E, quanto mais próximo desse limite o corpo chegasse, considerando que o ganho de massa aumentaria infinitamente, seria necessária uma força — também — infinita para que o objeto se elevasse à velocidade da luz.

A famosa equação de Einstein tem uma parte “menos lembrada”, que descreve como a massa de um objeto muda quando há movimento envolvido: E = mc² (Energia é igual a massa vezes a velocidade da luz ao quadrado). Na verdade, a equação completa é E²=(mc²)²+(pc)². A parte final é a que descreve como a massa do objeto muda quando há movimento envolvido.

 

Teoria ameaçada

Em 2011, foi anunciada uma descoberta que ameaçou anular tudo o que sabemos sobre a velocidade da luz, a Teoria da Relatividade e a física moderna!

Isso aconteceu na Suíça, quando físicos europeus conduziram um experimento chamado Oscillation Project with Emulsion-tRacking Apparatus (Opera, na sigla em inglês), para estudar o fenômeno da oscilação de neutrinos. Diferentemente das partículas de luz, os neutrinos são partículas que possuem uma pequena quantidade de massa. Por isso, segundo a Teoria da Relatividade Especial de Einstein, deveriam viajar a uma velocidade menor que a da luz.

No entanto, naquele ano, o projeto chamou a atenção de toda a comunidade internacional quando anunciou a detecção de neutrinos se movimentando em uma velocidade superior à da luz, o que poderia revolucionar a Física moderna.

No entanto, tudo não passou de um mal entendido por causa de um cabo de um relógio digital em um laboratório, que estava mal conectado. Quando alguém percebeu e o conectou corretamente, tudo voltou à normalidade e ficou comprovado que os neutrinos estavam viajando a uma velocidade mais baixa que a da luz.

Toda a Física moderna foi questionada, portanto, por causa de um cabo de fibra ótica solto, que fez com que a passagem do tempo fosse registrada de maneira incorreta. Acredita?

Mas é assim que a ciência funciona e deve funcionar. Cientistas cometem erros e aprendem com eles. É preciso provas muito fortes para mudar os rumos da Física, e é a partir de testes, experimentações, erros e acertos que isso é possível — mesmo que leve séculos.

 

6 mistérios que a física ainda não conseguiu explicar

Cientistas criaram teorias para entender e até tentar explicar alguns mistérios do universo, mas até hoje nada foi comprovado. Será que um dia teremos respostas para eles?

Assim como nós, os físicos, astrofísicos e cientistas estão cheios de perguntas. E, apesar dos avanços nestes campos, há mistérios que ainda são impossíveis de serem explicados. Para tentar entender certos fenômenos, foram estabelecidas teorias que, mesmo não podendo ser observadas ou comprovadas diretamente, são a única explicação para definir alguns enigmas do universo. Conheça a seguir alguns deles.

 

  1. A matéria escura

Cientistas calculam que 84% da matéria presente em nosso universo não emite e sequer absorve luz, a chamada matéria escura. Por não absorver nem emitir radiação, ela não pode ser vista diretamente, nem detectada de maneira indireta.

Eles acreditam na existência dessa matéria graças ao efeito gravitacional que exerce sobre outros elementos e sobre a estrutura do universo. Acredita-se que é composta por partículas massivas que interagem sem força entre elas e, por carecer de luz, os astrofísicos não conseguem detectá-la, apesar de saber que está ali.

materia escura

Matéria escura – Fonte: Superinteressante.

 

  1. A energia escura

Cientistas acreditam que há algo que contraria a força gravitacional de atração e, mesmo que a gravidade empurre tudo para o centro do nosso universo, ele continua em expansão.

A gravidade deveria evitar que isso acontecesse, mas na prática é diferente. Para explicar isso, sugere-se que exista uma energia invisível que se contrapõe à força da gravidade — a energia escura. Ela é tida como uma propriedade inerente do próprio espaço. À medida que o espaço se expande, mais espaço é criado e, consequentemente, mais energia escura.

Porém, também não é possível detectar a energia escura e os cientistas não conseguem comprovar sua existência, mas essa é a única explicação que existe até hoje. E mais: embora ninguém saiba como constatar, estima-se que 70% do universo é composto por energia escura!

 

  1. A inflação cósmica

A inflação cósmica é um conjunto de teorias concedida para explicar alguns enigmas que a teoria do Big Bang não podia responder. Diz-se que com a inflação cósmica, houve partes do universo que ficaram mais densas em matéria, e isso explicaria as galáxias e outros fenômenos.

Ao olharmos para o universo, observamos uma esfera que parece se estender por partes iguais em todas as direções. O que torna difícil a explicação de haver uma temperatura uniforme: como duas partes distantes do universo podem ter a mesma temperatura e densidade sem ter estado em contato? A inflação cósmica explica esse fenômeno.

A teoria sugere que essas partes chegaram a formar uma unidade e que, menos de um bilionésimo de segundo depois do Big Bang, o universo se inflou de forma repentina e em grande velocidade, expandido sua matéria a uma velocidade superior à da luz. Durante essa expansão, houve pequenas diferenças de temperaturas, pontos de maior densidade que se materializaram em galáxias e grupos de galáxias. Também foram produzidas as ondas gravitacionais previstas por Albert Einstein.

Apesar deste conhecimento, os físicos não podem atestar o que formou esses conjuntos de estrelas e ondas gravitacionais. Portanto, um fenômeno como a inflação cósmica pode fazer com que seja mais compreensível.

energia escuraA energia escura é uma pressão negativa que empurra o universo a expandir mais rápido. Fonte: Astrofísica para Todos.

  1. O destino do universo

“Para onde vamos?” Essa é uma das perguntas científicas que mais causam curiosidade e outras perguntas até hoje. Acredita-se que isso depende de um fator desconhecido que mede a densidade da matéria e a energia que existe no cosmos.

Considerando que esse fator é maior que a unidade, o universo seria uma esfera. Sem a energia escura mencionada antes, o universo deixaria de se expandir e tenderia a se contrair, provocando o colapso absoluto, num processo inverso ao Big Bang, conhecido também como Big Crunch. Mas, como essa energia existe, os cientistas acreditam que o universo seguirá se expandindo de maneira infinita.

Mas o universo se expandirá para sempre? Considerando-o como uma esfera e caso a energia escura exista de fato, esse universo esférico se expandirá eternamente.

De maneira alternativa, o universo pode ser curvo e aberto, como a superfície de uma sela para montar cavalos. Neste caso, o universo pode caminhar para dois processos — o Big Freeze e Big Rip. No primeiro, a aceleração do universo fará com que ele acabe desfazendo galáxias e estrelas, deixando matéria fria e abandonada. Depois, a aceleração aumentaria de maneira tão grande, que poderia superar a força que mantém os elementos de um átomo em seus devidos lugares, destruindo-o completamente.

Outra alternativa é que o universo pode ter uma estrutura planar, como uma mesa que se expande para todas as direções. Caso a energia escura não exista, neste modelo a aceleração da expansão do universo seria reduzida aos poucos, até parar completamente. Mas se a energia escura existir, tudo terminaria destruído com o Big Rip.

big ripSimulação do Big Rip. Fonte: Theweek.

 

  1. A entropia

Você sabia que alguns cientistas duvidam que o tempo tenha corrido sempre para a frente, mas não conseguem provar o contrário? Isso é explicado por uma propriedade da matéria chamada entropia, que é a quantidade de desordem de um sistema. Neste caso, das partículas do universo.

Basicamente, se o universo se desloca de uma baixa entropia para uma alta entropia, nunca poderemos ver os acontecimentos se reverterem. Esse movimento é irreversível, mas suscita um novo enigma para os cientistas: por que o universo era tão organizado em seu início? Se, como confirmado em outras teorias, havia uma grande quantidade de energia acumulada em um espaço tão reduzido, por que a entropia (a desordem) era tão baixa na origem do cosmos? Ainda não há resposta para isso.

 

  1. Os universos paralelos

Será que o universo em que vivemos é único? Até hoje, nada garante isso. Muitos cientistas defendem a hipótese de que é possível que o que chamamos de universo seja somente um entre outros infinitos espaços.

As leis da física quântica dizem que a configuração das partículas dentro de cada espaço é finita e que esta configuração deve, necessariamente, se repetir, o que implicaria em uma infinidade de universos paralelos. É daí que vem o conceito de multiverso, ou seja, diversos universos paralelos coexistindo sem que um tenha contato com o outro.

universos-paralelosUniversos paralelos. Fonte: Hypescience.

Da matéria escura aos universos paralelos: são tantos questionamentos! Que a ciência esteja sempre em evolução e que possamos presenciar a solução desses mistérios. <3

 

O que é e como funciona a energia solar fotovoltaica?

A energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos.

Você já parou para pensar que o Sol é o principal responsável pela origem de diversas fontes de energia? Através dele se dá a evaporação, fase inicial do ciclo das águas, que permite a geração de energia através das hidrelétricas, o Sol também permite a circulação atmosférica por todo o mundo, originando os ventos, outra fonte energética.

Já a energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos, porém quanto maior for a radiação solar, maior será  a quantidade de eletricidade produzida. A energia provinda do sol é inesgotável, uma excelente fonte de calor e luz e uma das grandes alternativas energéticas para o futuro.

Procurando por fontes de energia em locais remotos e isolados, praticamente sem rede elétrica, o desenvolvimento e investimento em energia solar começou em empresas do setor das telecomunicações. A tecnologia também foi logo utilizada para as missões no espaço

A energia fotovoltaica pode oferecer solução para diversas necessidades: desde ligar uma simples lâmpada de um poste de iluminação, até oferecer uma alternativa de produção de energia para uma casa ou mesmo uma grande usina solar, produzindo energia para milhares de famílias.

 

Como é produzida a energia solar

O processo de conversão da energia solar somente é possível graças ao efeito fotovoltaico, (composto por células normalmente feitas de silício ou outro material semicondutor). Assim, quando a luz solar incide sobre uma dessas células fotovoltaicas, os elétrons do material semicondutor são postos em movimento e geram eletricidade.

O efeito fotovoltaico, muito resumidamente, foi identificado por Edmond Becquerel em 1839, e significa o aparecimento de uma diferença de potencial nos extremos de uma estrutura de material semicondutor, que se deve à absorção da luz!

 

Entendendo a esquemática da energia solar fotovoltaica:

1) Os fótons da energia solar atingem as células fotovoltaicas, fazendo com que alguns dos elétrons que circundam os átomos se desprendam.

2) Estes elétrons livres vão migrar, através da corrente eléctrica, para a parte da célula de silício que está com ausência de elétrons.

3) Durante o dia todo, os elétrons irão fluir em uma direção constantemente, deixando átomos e preenchendo lacunas em átomos diferentes. Este fluxo de elétrons cria uma corrente elétrica, ou seja, a Energia Solar Fotovoltaica.

A potência gerada através dessa esquemática é enviada para o inversor — equipamento que converte a energia para os padrões da rede concessionária (corrente alternada). Depois disso, a energia é injetada na rede elétrica da residência, pronta para ser utilizada pelo consumidor.

 

 

sistema-de-microgeraçãoDiagrama esquemático do sistema fotovoltaico. Fonte: luzsolar.com.br

 

O mercado da energia fotovoltaica

Mais de 100 países já utilizam energia solar fotovoltaica. Os mercados que mais crescem são China, Japão e Estados Unidos, enquanto a Alemanha é o país que mais a produz, a energia provinda do sol é responsável por 6% da sua demanda de eletricidade. A energia solar fotovoltaica é agora, depois de hidráulica e eólica, a terceira mais importante fonte de energia renovável em termos de capacidade instalada a nível mundial.

Entre as vantagens na utilização da energia solar fotovoltaica estão: energia limpa; pode ser instalada em qualquer lugar; sistema silencioso; fonte inesgotável; sistema confiável; baixa manutenção; fácil instalação; é modular, pode ser ampliado conforme necessidade.

A energia fotovoltaica há muito tempo é vista como uma tecnologia de energia limpa e sustentável, que se baseia na fonte renovável de energia mais abundante e amplamente disponível no planeta – O SOL. Se você quer saber mais sobre fontes de energia renováveis, leia nosso artigo sobre a matriz energética no Brasil. 🙂

 

Marie Curie: quem foi a primeira mulher a ganhar um prêmio Nobel

Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

Em uma época onde apenas os homens podiam ir à universidade, Marie Curie descobriu um elemento químico e iniciou uma verdadeira revolução no meio científico. Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

E não é “apenas” isso. Naquela época, como mulher, Marie Sklodowska Curie precisou enfrentar muitas dificuldades para alcançar seus sonhos, e apesar de todo o preconceito da sociedade foi pioneira por sua coragem, determinação e descobertas científicas, ela não foi só a primeira mulher a ganhar um Nobel em Ciências, como foi a primeira pessoa a receber o prêmio duas vezes.

Encorajada pelo pai a se interessar pela ciência, a polonesa terminou os estudos aos 15 anos e passou a trabalhar como professora. Como o governo russo proibia que mulheres frequentassem universidades dentro de seu império, para continuar os estudos, Marie mudou-se para Paris.  Em 1883, graduou-se bacharel em Física e Matemática pela Universidade de Sourbonne, tornando-se, mais tarde, a primeira mulher a lecionar nessa importante instituição de ensino europeia. Depois de formada, foi a primeira classificada para o mestrado em Física e, no ano seguinte, a segunda para o mestrado em Matemática.

Em 1894, Marie conheceu o professor Pierre Curie com o qual se casou no ano seguinte, e passou utilizar o sobrenome Curie. Na época Pierre trabalhava no Laboratório de Física e Química Industrial no qual trabalharam juntos mais tarde.

Em julho de 1898, o casal conseguiu isolar um elemento 300 vezes mais ativo que o urânio. Em homenagem à sua terra, Marie batizou-o de polônio. Mas os Curie não estavam satisfeitos, porque o resto do material, depois de extraído o polônio, era ainda mais potente. Continuaram a purificação e cristalização e encontraram um novo elemento, 900 vezes mais radioativo (termo criado por Marie) que o urânio. Estava descoberto o “rádio”.

Durante a Primeira Guerra Mundial, Marie encabeçou a implementação de um sistema de radiografia móvel — um veículo que tinha uma máquina de raios-X e equipamento fotográfico de câmara escura — ajudando no tratamento de milhões de soldados. Além disso, também contribuiu para a ciência ao aprisionar o gás que emanava do elemento rádio e enviar os tubos para o tratamento do câncer em hospitais do mundo inteiro.

408d105b7e8237aa5d81430d5aa56787-783x450

“Eu faço parte dos pensam que a Ciência é belíssima. Um cientista em um laboratório não é apenas um técnico, ele é também uma criança diante de fenômenos naturais que o impressionam como um  conto de fada. Não podemos acreditar que todo progresso científico se reduz a mecanismos, máquinas, engrenagens, mesmo que essas máquinas tenham sua própria beleza”. Marie Curie

 

Prêmio Nobel

Seu primeiro Prêmio Nobel foi em 1903, dividido com seu marido Pierre Curie e o físico Henri Becquerel — pelas pesquisas sobre radiação.

Em 1904, Pierre foi nomeado professor da Sorbonne e Marie assumiu o cargo de assistente-chefe do laboratório dirigido por seu marido. Em 1905 Pierre Curie foi eleito para a Académie des Sciences. Dois anos depois Pierre Curie morreu tragicamente, vitimado por um atropelamento e Marie foi indicada para substituí-lo, tornando-se a primeira mulher a ocupar uma cadeira de professor na Sorbonne, e a primeira mulher a ocupar tal cargo na França.

Marie continua a estudar a radioatividade, principalmente suas aplicações terapêuticas e, em 1911, foi agraciada com o segundo Prêmio Nobel, desta vez de Química, por suas investigações sobre as propriedades do rádio e as características dos seus compostos. Tornou-se a primeira personalidade a receber duas vezes o Prêmio Nobel.

 

Morte

Em 4 de julho de 1934, Marie Curie faleceu perto de Sallanches, na França. Seus órgãos vitais estavam comprometidos devido à constante exposição à radioatividade sem nenhuma proteção.

Inspirada pela mãe, a filha de Marie, Irène Joliot-Curie, trabalhou com o marido Frédéric Joliot nos campos da estrutura do átomo e física nuclear, demonstrando a estrutura do nêutron e descobrindo a radioatividade artificial, feito este que rendeu mais um Prêmio Nobel para a família Curie.

A história de Marie rendeu muitos materiais audiovisuais. Para conhecer um pouco mais dessa fantástica história, o Museu WEG separou dois vídeos: o documentário “Marie Curie: A Mãe da Radiação” e o filme “Marie Curie na Guerra”, de 2014. Ambos disponíveis no Youtube. Assista:

 

***

Além de um ícone da ciência, Marie Curie também foi uma heroína de guerra e uma grande inspiração para que mais mulheres continuem seus estudos nos campos científicos. Que seu legado continue inspirando novos e novas cientistas no mundo todo! 🙂

 

Brasileiros analisam história da arte usando física

Haroldo, físico da Universidade de Maringá, no Paraná, foi criticado por vários pintores que achavam que não era possível quantificar a arte.

Segundo historiadores, a arte é dividida por suas características e estilos como, por exemplo, moderna e contemporânea. Pensando nisso, os físicos brasileiros Haroldo Ribeiro e Higor Sigaki buscaram verificar essa afirmação histórica, mas desta vez de uma maneira matemática.

No início, ao utilizar fórmulas matemáticas para analisar pinturas, Haroldo, físico da Universidade de Maringá, no Paraná,  foi criticado por vários pintores que achavam que não era possível quantificar a arte. Mas ele não desistiu e em parceria com Higor, desenvolveu um programa de computador que desconstrói obras de arte e as transforma em conjuntos de números para encontrar um padrão nas pinturas e na evolução da arte.

Nesta pesquisa, os físicos calcularam a probabilidade de os pintores seguirem um determinado padrão em cada momento da história.

Analisando a quantidade de pixels nas pinturas e as transformando em matrizes, as obras são caracterizadas a partir de dois critérios: entropia e complexidade. A entropia é a desordem, ou seja, os pixels dispostos de maneira aleatória em uma imagem. Já o conceito de complexidade, dando jus ao nome, é um pouco mais difícil de entender.

Segundo Ribeiro, em entrevista à GALILEU, a pesquisa aborda como complexo algo que não é totalmente aleatório mas que também não segue um padrão regular. “Uma pintura muito aleatória não é complexa. No entanto, uma pintura completamente ordenada também não é. O complexo está entre o aleatório e o regular. Tem que estar no meio, mas distante dos dois”, explicou.

Como já diziam os historiadores, a dupla foi capaz de encontrar uma mudança nos padrões das obras. Na arte moderna, por exemplo, as pinturas costumam ter uma grande entropia, mas pouca complexidade, mostrando que a arte é mais aleatória e desordenada. No caso da arte pós-moderna, as pinturas têm alta complexidade e baixa entropia. As artes da renascença ficam entre os dois conceitos.

No trabalho, as duas pinturas abaixo são tomadas como exemplos. A primeira, “Who’s Afraid of Red, Yellow and Blue”, de Barnett Newman, é classificada como tendo baixa entropia e baixa complexidade, já que segue padrão regular. Já a segunda pintura, “The Garden of Earthly Delights”, feita por Hieronymus Bosch, é considerada mais complexa, mas com um grau de entropia mediano.

arte1

Exemplos de pinturas analisadas pela complexidade e entropia (Foto: reprodução)

O objetivo da análise é realizar uma classificação cada vez mais efetiva das obras de arte, que é algo muito demorado para ser feito, mesmo por um especialista de obras de arte. Mais uma vez fomos surpreendidos pelas equações e tudo o que elas podem fazer por nós e nossa história!

Fonte: Revista Galileu.

 

Buraco negro: Parece que Einstein acertou mais uma vez

A primeira imagem de um buraco negro representa um marco histórico para a astrofísica, mas também serve para confirmar e validar a teoria geral da relatividade do renomado físico Albert Einstein.

Estima-se que os buracos negros sejam fenômenos cósmicos que se originam quando uma estrela entra em colapso. O restante de sua matéria fica limitado a uma pequena região, que logo dá lugar a um imenso campo gravitacional, levantando algumas das questões mais complexas sobre a natureza do espaço e do tempo e, agora, até mesmo sobre nossa existência.

A primeira imagem de um buraco negro representa um marco histórico para a astrofísica, mas também serve para confirmar e validar a teoria geral da relatividade do renomado físico Albert Einstein, agora os buracos negros são reais, não mais uma simulação de cálculos teóricos.

Na imagem, registrada de 05 a 11 de abril de 2018, o buraco negro parece um anel laranja em torno de uma silhueta redonda escura, na qual os astrônomos reconheceram o buraco negro na galáxia batizada de M87, e, para ter ideia da sua dimensão, ele é maior que o tamanho de nosso Sistema Solar inteiro. Ele não se localiza exatamente no centro da galáxia, mas a 22 anos-luz na lateral — o que facilitou o reconhecimento, o buraco negro tem 40 bilhões de quilômetros de diâmetro – cerca de 3 milhões de vezes o tamanho de nosso planeta – e é descrito pelos cientistas como um “monstro”.

 

passioneastronomia_56584409_879642212382166_5987380464980334360_n

Simulação / expectativa /  imagem real (@thelionlaw)

 

Nenhum telescópio, sozinho, seria poderoso o suficiente para visualizar o buraco negro.

Assim, o professor Sheperd Doeleman, do Centro de Astrofísica Harvard-Smithsonian, liderou um projeto para montar uma rede de oito telescópios interligados. Juntos, eles formam o Telescópio Event Horizon e podem ser considerados como uma variedade de pratos do tamanho de um planeta.

Cada um está localizado no alto de uma variedade de locais exóticos, incluindo vulcões no Havaí e no México, montanhas no Arizona e na Sierra Nevada espanhola, no deserto do Atacama no Chile e na Antártida. Uma equipe de 200 cientistas apontou os telescópios em rede em direção à M87 e examinou seu coração durante um período de 10 dias.

A primeira imagem de um buraco negro coincide com os simulações baseadas nas equações de Einstein, que previam um anel brilhante no entorno de uma forma escura. Nessa simulação, a luz seria produzida por partículas de gás e poeira aceleradas em alta velocidade e destruídas pouco antes de desaparecer no buraco. A área escura seria a sombra que o buraco lança nesse turbilhão.

Esta imagem permitirá novos estudos, ninguém ainda sabe como o anel luminoso é realmente criado, e muito menos o que acontece quando um objeto entra no buraco negro. Cientistas acreditam que existam explicações mais complexas para a gravidade ainda não descobertas, nem mesmo por Einstein, e é no buraco negro que, provavelmente, essas limitações devem ser expostas.

Outra curiosidade é que a luz é mais brilhante do que todas as bilhões de outras estrelas da galáxia combinadas – e é por isso que ela pode ser vista da Terra. A borda do círculo visto na imagem é o ponto no qual o gás entra no buraco negro, do qual nem mesmo a luz pode escapar. É o ponto em que todas as leis da física são quebradas.


Fontes:

BBC | El Pais

1º livro técnico sobre máquinas elétricas do Brasil é lançado por engenheiro da WEG

Dividido em 4 volumes é o material mais completo e aprofundado sobre o assunto hoje no Brasil, já que compila seus 45 anos de experiência com máquinas elétricas como funcionário da WEG, pesquisador, projetista e analista de máquinas.

Esta é mais uma daquelas histórias que fazem a gente se orgulhar. Fredemar Rüncos, PhD em Engenharia Elétrica pela UFSC (Universidade Federal de Santa Catarina) começou a trabalhar na WEG e fazer a escolinha técnica da WEG com 16 anos e hoje, se diz realizado com a concretização de um sonho: registrar tudo o que sabe sobre máquinas elétricas.

Segundo ele, este livro, dividido em 4 volumes é o material mais completo e aprofundado sobre o assunto hoje no Brasil, já que compila seus 45 anos de experiência com máquinas elétricas como funcionário da WEG, pesquisador, projetista e analista de máquinas.

Talvez você esteja se perguntando como surgiu essa ideia. E nós vamos responder com as palavras dele: “Após finalizar o meu doutorado, eu pensei: O que vou fazer agora? Vou registrar tudo o que eu sei.”. E nós do Museu WEG, não poderíamos deixar de comemorar a conclusão deste feito e parabenizar por esse resultado incrível.

 

O processo de criação

Escrito ao longo de 9 anos, apenas no seu tempo livre aos finais de semana, ele nunca pensou em desistir. Afinal, o material é resultado da sua paixão pela física, pelas máquinas elétricas, pelo seu trabalho e sua determinação em cumprir a meta que propôs a si mesmo em 2009.

Com a colaboração da Editora OitoNoveTrês, o livro intitulado Projeto e Análise da Máquina Elétrica Trifásica nasce em forma de quatro volumes e mais de 1.500 páginas.

A WEG contribuiu financeiramente para a impressão da primeira tiragem, de 250 exemplares de cada volume.

 

Conheça o livro

O material é voltado para profissionais do setor, cursos de graduação e pós-graduação e estudantes de engenharia elétrica. Os quatro volumes abordam a fundo os tipos de máquinas trifásicas e contam com imagens cedidas pela própria WEG. Os livros explicam e exemplificam com ilustrações como criar um pré-projeto de máquinas elétricas, além de se aprofundar na teoria do campo girante, nos parâmetros físicos da máquina, nas perdas e adensamentos de corrente, a modelagem e aplicações.

livros

Volume I: Aspectos Construtivos da Máquina Elétrica

Volume II: As Harmônicas do Campo Girante e Parâmetros da Máquina Elétrica

Volume III: As Perdas da Máquina Elétrica

Volume IV: A Modelagem e Aplicação da Máquina Elétrica

 

O conhecimento gerado será de grande utilidade para o desenvolvimento de novas tecnologias no setor e para a formação de profissionais no país. Como o próprio Rüncos revelou em entrevista, são poucos os especialistas em máquinas elétricas no Brasil, e esta é uma especialidade que vai proporcionar ao Engenheiro com conhecimento em máquinas elétricas um mercado de trabalho por muitos e muitos anos. Isso porque, como físico, afirma que vai demorar para a ciência desenvolver uma nova teoria de conversão eletromecânica que substitua a máquina elétrica.

 

Minibiografia

Fredemar Rüncos é bacharel em Física pela Universidade Federal do Paraná (1980), tem graduação em Engenharia Elétrica pela Universidade Federal do Paraná (1980), mestrado em Engenharia Elétrica pela Universidade Federal de Santa Catarina (2001) e doutorado em Engenharia Elétrica pela Universidade Federal de Santa Catarina (2006). É professor de graduação e pós-graduação do Centro Universitário de Jaraguá do Sul (Católica SC) e Consultor em D&IT – WEG Energia S/A. Tem décadas de experiência na área de Engenharia Elétrica, com ênfase em Máquinas Elétricas Girantes.

Foto de capa: Eduardo Montecino/OCP News

Fonte da matéria: OCP News e Entrevista exclusiva com o autor Fredemar Rüncos

Quem foi Hans Christian Oersted?

ísico, químico e eterno estudioso, foi ele quem abriu caminho para o desenvolvimento do eletromagnetismo. Nascido em 1777, na Dinamarca, Hans Oersted desenvolveu desde cedo o interesse pela ciência. Sob influências do pai farmacêutico, formou-se em Farmácia no ano de 1797 e tornou-se doutor em Filosofia em 1799.

Físico, químico e eterno estudioso, foi ele quem abriu caminho para o desenvolvimento do eletromagnetismo. Nascido em 1777, na Dinamarca, Hans Oersted desenvolveu desde cedo o interesse pela ciência. Sob influências do pai farmacêutico, formou-se em Farmácia no ano de 1797 e tornou-se doutor em Filosofia em 1799.

Em uma viagem pela Europa, conheceu Johann Wilhelm Ritter, um físico que acreditava na existência de uma ligação entre a eletricidade e magnetismo. A partir daí, Oesrted começou sua incansável busca pela relação entre os dois fenômenos. Isso porque, naquela época, a eles eram encarados como fenômenos independentes e totalmente excludentes.

A experiência de Oersted

Foi em 1820, através do “Experimento de Oersted”, que o cientista comprovou a relação entre a eletricidade e o magnetismo.

Oersted posicionou uma bússola próximo a um circuito elétrico simples e percebeu que a agulha imantada da bússola sofria deflexões quando existia corrente elétrica no circuito. Se a corrente era interrompida, a agulha voltava à sua posição normal, apontando sempre para o norte geográfico.

A única explicação possível para a deflexão sofrida pela agulha imantada era a presença de um campo magnético que concorria com o campo magnético terrestre. Assim, Oersted concluiu que cargas elétricas em movimento geravam campo magnético.

Esse experimento possibilitou a criação e fabricação do galvanômetro, instrumento composto por uma agulha imantada e uma bobina que era capaz de indicar a presença de corrente elétrica em um circuito.

Ao utilizar o aparelho galvânico, muito mais poderoso, percebeu o mesmo fenômeno com muito mais clareza. Após obter o mesmo resultado diversas vezes, surge uma nova ciência nascida da união entre a eletricidade e o magnetismo: o eletromagnetismo. E estabeleceu-se a lei fundamental do eletromagnetismo.

Leia mais sobre o Eletromagnetismo aqui.

Depois de ter realizado estudos de química, física e ter comprovado o eletromagnetismo, Hans fundou na Dinamarca uma Sociedade para o Desenvolvimento do Estudo da Ciência, foi nomeado Conselheiro do Estado e fundou a Escola Politécnica de Copenhagen. Oersted faleceu em Copenhagen em 9 de março de 1851.

Fonte: Brasil Escola, Mundo Educação e UFJF