Quais são as 3 Leis de Kepler?

Saiba como as 3 leis de Kepler revolucionaram a astronomia e a compreensão do movimento dos planetas.

Johannes Kepler foi um matemático e astrônomo alemão que contribuiu significativamente para a compreensão do movimento dos planetas e para o desenvolvimento da astronomia moderna.

Alguns pensadores da época acreditavam que a Terra era o centro de todo o Universo, conhecido como Geocentrismo, e ficava parada enquanto o sol girava ao redor dela. Naquela época, a percepção religiosa era a única verdade.

Posteriormente, surgiu a ideia de que, na verdade, o Sol estivesse no centro e a Terra que era responsável por percorrer ao seu redor (Heliocentrismo). Mesmo que essa ideia fizesse muito mais sentido, na Idade Média, essa opinião ainda não era bem aceita pela igreja. 

Foi aceita quando o matemático Johannes Kepler provou, por meio de seus cálculos, que o modelo Heliocêntrico era o mais correto. Por meio desses estudos, ele então publicou as 3 Leis de Kepler

No conteúdo a seguir, você conhecerá um pouco mais sobre ele e entenderá as leis que ele instituiu a partir do seu estudo.

Quem foi Johannes Kepler?

Astrônomo e matemático alemão, Johannes Kepler nasceu em 1571. Auxiliar de Tycho Brahe, grande nome da astronomia da época, o professor Kepler assumiu os estudos de seu mentor após sua morte e assim começou a revolucionar o mundo da astronomia. 

Em 1609, publicou o livro Astronomia Nova, no qual se encontram suas duas primeiras leis e, em 1619, publicou seu maior trabalho, Harmonia do Mundo, no qual apresenta sua terceira e última lei. 

As 3 Leis de Kepler

Johannes Kepler trouxe para a ciência um estudo mais aprofundado do que Tycho Brahe, Ptolomeu e Nicolau Copérnico já vinham pesquisando anteriormente. 

Isso aconteceu após Kepler perceber que a velocidade orbital dos planetas ao redor da Terra não era constante, concluindo que a órbita dos planetas, na verdade, era elíptica e não perfeitamente circular. 

As 3 Leis de Kepler são destinadas ao movimento planetário, sendo definidas como Lei das Órbitas Elípticas (1), Lei das Áreas (2) e, por fim, Lei dos Períodos (3). Saiba mais sobre elas!

1ª Lei de Kepler: Lei das Órbitas Elípticas

A 1ª Lei de Kepler diz respeito ao formato das órbitas dos planetas que giram ao redor do Sol. Kepler deduziu que os planetas não giram em uma linha perfeitamente redonda ao redor do Sol, e sim de uma linha elipse, quase um desenho de um ovo.

Para ficar mais claro, desenhe um ovo em uma folha. Dentro do ovo, perto da borda superior, desenhe um sol e, exatamente na linha da borda inferior, desenhe a Terra. Pronto, agora você tem uma forma de visualizar o que estamos falando por aqui. 

O que é possível perceber com a 1ª Lei de Kepler é que, em determinados momentos, os planetas estarão mais afastados do Sol (conhecido como ponto Afélio), enquanto em outros eles estarão mais perto (conhecido como ponto Periélio).

Lei das Órbitas Elípticas: dica para o ENEM

Nos vestibulares, geralmente há uma pegadinha dizendo que, quando a Terra está no ponto Afélio, ela está no inverno e, quando ela está no ponto Periélio, ela está no verão. 

Isso está errado, fique atento! O que determina as estações do ano é a inclinação da Terra, e não o percurso orbital.

2ª Lei de Kepler: Lei das Áreas

Antes de aprofundar a explicação, pegue seu desenho de Ovo-Terra-Sol e faça uma linha da Terra em direção ao Sol. Agora faça mais uma Terra perto dessa primeira e mais duas Terras iguais, porém, ao lado do Sol (todas com uma linha individual que as ligue com o Sol).

Kepler definiu que a velocidade percorrida dentro dessas áreas desenhadas é sempre igual. É por isso que a Lei das Áreas diz que a velocidade do percurso dessa linha que liga a Terra com o Sol é sempre igual. 

Quanto mais perto do Sol (ponto Periélio), maior será a velocidade percorrida pelo planeta; quanto mais longe (ponto Afélio), mais devagar ele irá andar. 

Essa é a Lei que, para muitos físicos, é conhecida como a mãe da astrofísica. Além disso, essa Lei foi muito importante para que Newton descobrisse a Gravidade e, posteriormente, Einstein desenvolvesse a sua Lei da Gravidade Geral.

3ª Lei de Kepler: A Lei dos Períodos

Pegue o seu desenho de Ovo-Terra-Sol e imagine que suas Terras estejam andando pela linha do ovo. Perceba que, conforme a Terra vai caminhando, as linhas imaginárias desenhadas vão mudando de tamanho. 

Esta é a 3ª Lei de Kepler: conforme acontece o movimento orbital, a distância entre a Terra e o Sol sofre uma mudança. Quando a Terra está no Afélio, é possível ver uma distância bem grande entre ela e o Sol, mas, quando ela está no Periélio, essa distância fica bem curtinha. 

Quanto mais longe o planeta estiver do Sol (Afélio), maior será o tempo que ele levará para percorrer a órbita. Essa distância é chamada de Período. Esta é a fórmula final dessa Lei:

T²/r³=K

NOMENCLATURA:

T = Período orbital (distância entre a Terra e o Sol) 

r = Raio médio da órbita 

K: Valor constante (velocidade de todos os corpos que orbitam a Terra) 

Para descobrir o valor da constante (K), você pode seguir a seguinte fórmula:

K= 4²/GMs

NOMENCLATURA:

G = Constante da gravitação do Universo M = Massa do Sol

A Lei dos Períodos: Dica para o ENEM

Para não se perder com tantas fórmulas, você pode resumi-las em apenas uma: 

T²/R³= 4π²/GM

E aí? Curtiu este conteúdo? Então corra para o Blog do Museu WEG e encontre mais assuntos como este! Você também pode seguir o Instagram do Museu WEG para sempre ficar por dentro das novidades que saem por aqui. 

Fontes:

Leis de Kepler – InfoEscola

Leis de Kepler – Brasil Escola

Leis de Kepler: quais são? – Stoodi

Fenômenos Ondulatórios: Entenda o que são e quais os tipos existentes

Descubra a incrível ciência das ondas: entenda o que são fenômenos ondulatórios e saiba quais são os tipos existentes. Acesse agora nosso blog!

Os fenômenos ondulatórios são os princípios da física representados por ondas. Existem diversos tipos de ondas, como por exemplo, a voz humana ou o micro-ondas. 

Enquanto a voz humana emite as ondas sonoras, ondas que criam uma perturbação nas moléculas de ar que se propagam até o ouvido humano, o micro-ondas já lida com uma onda diferente, trabalhando apenas com ondas eletromagnéticas, gerando calor. 

Existem também as ondas físicas, como a de balançar uma corda, as ondas do mar, entre outros exemplos (que são cobrados no ENEM). Agora que você já entende o conceito de ondas, vamos conhecer os tipos de fenômenos ondulatórios? Continue a leitura!

Tipos de Fenômenos Ondulatórios

Os fenômenos ondulatórios são divididos em 7 tipos, mas os mais importantes (em grau de relevância para o ENEM) são 3: Reflexão, Refração e Difração. Confira!

Reflexão

A reflexão é uma onda que bate em um objeto e retorna para o seu local de origem. Para ficar mais claro, pense na última vez que você ouviu o eco da sua voz. Você falou algo, sua voz se projetou através de uma onda sonora, bateu em um obstáculo e voltou para você.

Como a onda “não mudou de meio”, a sua velocidade, a sua frequência e o seu comprimento de onda permanecem sendo os mesmos. Você pode decorar esse conceito pensando no seguinte: quando você se olha no espelho, você encontra uma imagem exata sua, ou seja, nada mudou. 

Refração

Diferente da Reflexão, a Refração acontece quando um objeto reflete uma parte da onda e deixa que outra parte dela o atravesse distorcendo a direção original. 

A grande sacada aqui é entender que, como o “meio irá mudar”, a velocidade e o comprimento de onda irão mudar mantendo apenas a frequência igual à que estava antes. 

Para ficar mais claro, pense em uma lente que reflete a luz azul. Uma pessoa que usa óculos com essas lentes geralmente vê um reflexo na cor azul em cada lente (o reflexo da luz), mas também consegue enxergar o atravessar da luz para os olhos.

Difração

O oposto de Reflexão, a Difração refere-se a uma onda que atravessa um objeto refletindo parte da energia e absorvendo uma pequena quantidade dela, enquanto a maior parte dessa onda segue o percurso normalmente. 

Ela contorna um obstáculo e, como sofre uma perturbação, gera um espalhamento das ondas. A difração “é ainda mais intensa quando o comprimento de sua onda tem valor próximo ou maior que as dimensões da fenda por onde ela está passando”. 

Para ficar claro, pense em duas pessoas conversando, uma de cada lado de um muro. Mesmo que não se vejam, ambas conseguem se ouvir, pois as ondas sonoras conseguem atravessar o muro. 

Polarização

A polarização funciona como uma peneira na qual as ondas transversais são filtradas. É como se a polarização fosse uma difração direcionada. Enquanto a difração espalha a onda, a polarização a direciona para apenas uma direção.

Dispersão

Ligada diretamente à velocidade de propagação de uma onda, a dispersão acontece quando várias ondas com velocidades diferentes se unem e geram uma onda única alterando a sua velocidade de propagação.

Interferência

Para ficar mais fácil de entender a interferência, lembre-se da cena em que Harry Potter e Lord Voldemort têm suas varinhas ligadas por dois feitiços diferentes. A interferência acontece dessa forma. 

No fim de Harry Potter e As Relíquias da Morte – Parte 2, o feitiço de Harry sobrepõe o de Voldemort exatamente como acontece com um fenômeno de interferência. 

Em palavras mais técnicas, a interferência acontece quando há uma sobreposição entre duas ou mais ondas, transformando ambas em uma onda resultante. 

Diferente da polarização, na interferência, é possível que ela seja uma onda que soma a amplitude das demais ondas (interferência construtiva) ou pode ser a diferença entre as amplitudes das ondas anteriores e a amplitude da onda unificada (interferência destrutiva).

Ressonância

A ressonância é como se fosse um amplificador de frequência no qual a frequência natural da onda receberá uma excitação que a ampliará. 

Qual é a diferença entre Fenômenos Ondulatórios Mecânicos e Eletromagnéticos?

A onda mecânica necessita de uma interferência para acontecer (como jogar uma pedra em um rio para ver as ondas), as ondas eletromagnéticas são aquelas que lidam com o eletromagnetismo (ondas de rádio). 

Em outras palavras, os fenômenos ondulatórios mecânicos “precisam de um meio para se propagar”, enquanto os fenômenos ondulatórios eletromagnéticos “não precisam, podendo se propagar até no vácuo”. 

Curtiu este conteúdo? Então dê uma conferida no Blog do Museu WEG para encontrar mais assuntos que são cobrados no ENEM. 

Você também pode seguir o Museu WEG no Instagram, lá sempre são compartilhadas pegadinhas do mundo da ciência que geralmente são usadas em vestibulares. 

Fontes:

Fenômenos ondulatórios – Globo Educação

Fenômenos Ondulatórios na Prova do Enem – InfoEnem

Fenômenos ondulatórios – Mundo Educação

O que é Energia Mecânica e quais são seus principais fundamentos?

Entenda de uma vez por todas o que é energia mecânica e como ela funciona o seu dia a dia. Venha aprender com o Museu WEG!

A natureza é tão perfeita que, em cada canto do planeta, existe alguma energia sendo transferida ou transformada a todo instante. É isso mesmo! A energia é transferida de um corpo para outro ou transformada de um tipo para outro. E você nem precisa ir tão longe na imaginação para encontrar exemplos. 

É o caso da roda gigante do Beto Carrero. Se nós lhe contássemos que ela funciona por meio da transferência de energia, você acreditaria? 

É justamente sobre esta transferência ou transformação de energia que falaremos hoje. Para aprender mais sobre o que é energia mecânica, continue a leitura!

O que é Energia Mecânica? 

A energia mecânica, de modo bem simples, é a energia produzida pelo trabalho de um corpo e que pode ser transferida para outro. O que isso quer dizer na prática? Significa que a energia contida num corpo em movimento pode ser transferida para outro corpo, que também passa a se mover. Como por exemplo, a água que cai sobre uma roda d’água e faz com que esta gire. 

No dia a dia, estamos constantemente rodeados por trabalhos da energia mecânica e, para deixar tudo ainda mais claro, com base nas motivações desses movimentos, essa grandeza foi dividida em três vertentes diferentes: energia cinética, potencial gravitacional e potencial elástica. 

Energia Cinética

A energia cinética está ligada à massa e à velocidade, ou seja, está totalmente ligada ao movimento que um corpo está exercendo no espaço. E esta energia pode ser transferida de um corpo para outro.  

Para ficar mais claro, imagine um jogo de sinuca. Você exerce a força no taco acertando a bola branca e, quando a bola branca atinge as demais bolas da mesa, sua energia cinética é transferida para as demais levando-as ao movimento e desacelerando a bola branca. 

É como se a bola branca “doasse” parte da sua velocidade para que as outras bolas entrem em movimento. A fórmula da energia cinética é:

Ec = m.v²/2

Tabelinha da nomenclatura:

Ec =  Energia cinética 

m = Massa 

v = Velocidade 

Energia Potencial Gravitacional

Já a energia potencial gravitacional é a forma de energia associada à altura do corpo com relação ao solo. Lembra da montanha russa?

Quando o carrinho está subindo, sua energia potencial gravitacional está aumentando, pois sua altura em relação ao solo está aumentando. quando o carrinho desce puxado pela gravidade, ele aumenta sua velocidade, transformando a energia potencial gravitacional em energia cinética. 

A fórmula da energia mecânica potencial gravitacional é:

Epg = m.g.h

Tabelinha da nomenclatura:

Epg=  Energia potencial gravitacional  

m = Massa 

g = Aceleração da gravidade 

h = Altura 

Energia Potencial Elástica

Por fim, a energia potencial elástica é a forma de energia que é adquirida por corpos elásticos ou flexíveis capazes de retornarem ao seu formato original após sofrerem algum tipo de deformação, como por exemplo molas e elásticos.  

Um grande exemplo da energia potencial elástica está no uso de um arco e flecha. Ao puxar a corda, o arco deforma-se como uma mola. Ao soltar, volta à sua forma original gerando o movimento da flecha. Neste caso a energia potencial elástica do arco transforma-se em energia cinética transferida para a flecha. A energia potencial elástica depende da constante elástica do corpo, bem como do tamanho da deformação sofrida por ele. A fórmula da energia mecânica potencial elástica é:

Epel = k.x²/2

Tabelinha da nomenclatura:

Epel =  Energia potencial elástica 

k = Constante elástica 

x = Deformação 

Você pode aprender na prática sobre energia mecânica visitando o Museu WEG. Em exposição, contamos com a experiência de uma bicicleta que, ao ser pedalada, transforma energia mecânica de movimento (energia cinética) em energia elétrica. É BEM legal! Chame seus amigos e venha conferir! 

Você também pode conhecer o Museu WEG pelo Tour Virtual. Assim você aprende tudo sobre motores elétricos e confere todas as obras em exposição e visita no Museu WEG sem sair de casa. Para acessar o Tour Virtual, é só clicar aqui

Gostou deste conteúdo? Então não se esqueça de seguir o Museu WEG no Instagram! Assim você sempre será avisado em primeira mão sobre todos os novos conteúdos publicados no Blog do Museu.

Fontes:

Energia mecânica – PrePara Enem

Os tipos de energia mecânica – Plataforma Enem

O que é energia mecânica? – Brasil Escola

O que é eletrostática e quais seus princípios?

Descubra o que é eletrostática e aprofunde seus conhecimentos sobre esse ramo da física que estuda comportamento de cargas elétricas.

Quem curte estudar física, com certeza já se deparou com o tema eletrostática em algum momento da vida. Mesmo quem nunca ouviu o termo, com certeza já presenciou algum exemplo prático no seu dia a dia.

Friccionar as meias no tapete, esfregar o balão no cabelo e sentir os pelos do braço se aproximando da televisão são alguns dos diversos exemplos que as pessoas geralmente experimentam, mas que, na maioria das vezes, não associam ao estudo da ciência.

Quer compreender o porquê destas experiências serem tão relevantes para o ensino da eletrostática e finalmente entender o que é eletrostática? Continue a leitura!

O que é eletrostática?

Eletrostática é um ramo da física destinado ao estudo do comportamento de cargas elétricas em repouso, ou seja, que se mantém “paradas”. O nome “Eletrostática” literalmente é uma junção entre “eletro” (eletricidade) + “estática” (parada).

Você deve estar se perguntando: mas como uma energia parada, estável, pode gerar ações como arrepiar os pelos do braço ou dar choques em outras pessoas?

A resposta é que a eletrostática acaba sendo alterada quando essas cargas entram em movimento, resultando em uma corrente elétrica.

É justamente nesta etapa em que a “eletrostática” muda para a “eletrodinâmica”. Para ficar bem claro de entender, pense na eletrostática como uma pessoa tirando um cochilo e a eletrodinâmica como a sua reação ao ouvir o despertador.

Curiosidade: a história da eletrostática

Antes de entrarmos em um assunto técnico, nada melhor que passear pela história da eletrostática!

Como este ramo da física é bem abrangente e antigo, é difícil apresentar com certeza quem realmente foi o descobridor deste estudo de energias estáticas.

Porém, conforme estudos de Maurício Ruv Lemes, o descobridor da eletrostática foi Tales, em 600 a.C. Tales concluiu a existência da eletrostática ao atrair restos de palha após triturar o âmbar.

Séculos e mais séculos depois, diversos estudiosos publicaram conteúdos relevantes sobre o assunto, mas se formos apresentar todos eles, ficaremos aqui por muito tempo. Então, vamos focar só em Tales!

Propriedades da eletrostática

A eletrostática é composta por algumas propriedades específicas destinadas à compreensão deste ramo da física: a Carga Elétrica, a Força Elétrica, o Campo Elétrico, o Potencial Elétrico e a Energia Potencial Elétrica.

Ficou confuso? Então confira o que cada uma delas abrange:

Carga Elétrica

Representada como Coulomb (C), esta é uma propriedade própria das partículas fundamentais de uma matéria, como a massa de um corpo, os elétrons e prótons presentes, entre outras.

Diferente de outras propriedades físicas, a Carga Elétrica é limitante, abrangendo apenas corpos que possuem um valor mínimo (que é BEM pequeno). A famosa Carga Fundamental. Você pode calcular a Carga Elétrica de um corpo seguindo a equação:

Q = n . e

Tabelinha de nomenclatura:

Q = Carga Elétrica (medido em C)

n = Quantidade de elétrons

e = Carga fundamental

Força Elétrica

Sabe aquele conceito de “os opostos se atraem”? Na física isso também é verdade!

Quando corpos diferentes contam com a mesma carga elétrica, eles se repelem, e o oposto acontece quando a carga elétrica é diferente. Isso ocorre porque todos os corpos estão constantemente tentando se equivaler, energeticamente falando.

É justamente por isso que levamos choques ao tocar em algumas pessoas, por exemplo. Para calcular a Força Elétrica é só seguir a fórmula:

F = k . (q1 . q2) / d²

Tabelinha de nomenclatura:

F = Força Elétrica (medida em N)

k = Constante Eletrostática no Vácuo

q1 e q2 = Cargas Elétricas 1 e 2 (medida em C)

d = Distância entre as Cargas (medida em M)

Campo Elétrico

Como você já deve ter percebido na explicação de Força Elétrica, no mundo da física, toda carga elétrica influencia, de alguma forma, o espaço em que está inserida. Isso acontece graças ao seu Campo Elétrico.

De forma bem resumida e simples, o Campo Elétrico é a influência exercida ao redor de cada corpo, de cada carga elétrica.

E = (k . Q)/d²

Tabelinha de nomenclatura:

E = Intensidade do Campo Elétrico (Medida em N/C)

k = Constante Eletrostática no Vácuo

Q = Módulo da Carga (C)

d = Distância entre a Carga e um Ponto do Campo

Potencial Elétrico

O Potencial Elétrico de um corpo é uma quantidade de energia fornecida por um campo elétrico, ou seja, é a quantidade necessária de força que precisa ser exercida para que a carga elétrica entre em movimento.

A fórmula que possibilita este cálculo é:

U = k . Q/d

Tabelinha de nomenclatura:

U = Potencial Elétrico (medido em V)

k = Constante Eletrostática no Vácuo

Q = Carga Elétrica Geradora (medida em C)

d = Distância entre a Carga e um Ponto do Campo (medida em M)

Energia Potencial Elétrica

E, por fim, chegamos à propriedade de Energia Potencial Elétrica que, nada mais é que a energia gerada pela fixação entre duas cargas elétricas.

Esta propriedade física diz respeito àquela partícula que já está inserida em um campo elétrico, ou seja, que necessitará da realização de um Trabalho para que ela entre em movimento. Para calcular a Energia Potencial Elétrica, é só seguir a fórmula:

V = Ep/Q

Tabelinha de nomenclatura:

V = Potencial Elétrico (medido em V)

Ep = Energia Potencial Elétrica (medida em J)

Q = Carga Elétrica (medida em C)

Você sabia?

No Museu WEG você pode experienciar uma invenção de manifestação da energia eletrostática com o Gerador de Van de Graaff.

Desenvolvido para atingir tensões mais elevadas de energia, Jemison Van de Graaff, em 1929, criou este tão conhecido e querido experimento presente no Museu WEG.

De forma prática, o Gerador Van de Graaff é um motor que, ao movimentar uma correia feita de material isolante, alcança altas tensões. A experiência prática resulta no arrepio dos pelos do corpo, sendo muito divertida e educativa para exemplificar o estudo da eletrostática.

Você pode ver de perto o Gerador Van de Graaff acessando o Tour Virtual do Museu WEG! Assim você aprende mais e conhece este experimento sem sair de casa!

OBS: É bem mais legal experienciar o Gerador Van de Graaff pessoalmente no Museu WEG.

Curtiu este conteúdo? Então não deixe de seguir o Museu WEG no Instagram! Assim você sempre será avisado quando assuntos como este estiverem disponíveis.

Fontes:

Eletrostática – PreparaEnem

Eletrostática – Mundo Educação

Eletrostática – Brasil Escola

O que é eletrostática? Aprenda como as cargas elétricas se comportam! – Beduka

A Ciência Explica: por que terremotos acontecem?

Os terremotos podem causar efeitos catastróficos. Acesse e entenda o que são e por que terremotos acontecem!

Os terremotos são eventos geológicos que podem causar efeitos catastróficos, tanto no ambiente como também na sociedade. Dependendo da intensidade, pode-se observar graves desastres causadores de mortes e destruição.

No Japão, em 2011, um terremoto de grande magnitude foi tão avassalador que ocasionou um dos maiores tsunamis da história da humanidade, chegando a uma velocidade média de 800 km/h, com ondas de até 10 metros de altura.

Paralelo a isso, existem terremotos de pouquíssima intensidade, que podem ser imperceptíveis. Esses fenômenos naturais, normalmente, geram muitas dúvidas, como, por exemplo: por que terremotos acontecem? Continue a leitura e compreenda!

O que são e por que acontecem os terremotos?

O mundo é dividido em camadas, como diria o Shrek é como uma cebola: abaixo da superfície, ou seja, abaixo de onde vivemos, encontra-se a crosta terrestre.

A crosta terrestre possui rachaduras e é formada por vários blocos, chamados de Placas Tectônicas. Essas placas flutuam em um líquido chamado de magma, aquele mesmo líquido que, durante uma erupção, os vulcões expelem.

Devido a essa flutuação, existem momentos em que as placas podem colidir entre si, e é graças a essa colisão que acontecem os terremotos. Na nomenclatura científica, os terremotos são chamados de abalos sísmicos.

Para ficar mais claro, pense em uma prancha de surf sobre a água, onde a prancha de surf é a placa tectônica e a água é o magma.

Como essa prancha de surf está sobre uma superfície volátil, é normal que ela continue se mexendo, o que facilita que, quando outra prancha cruze seu caminho, às duas se batam.

A força do choque dessas duas ou mais placas tectônicas é tão forte que pode ser sentido através de tremores na superfície onde vivemos, o que nós chamamos de terremotos.

Além dos terremotos causados por processos internos (chamados de tectônicos), também existem terremotos atectônicos, que são fenômenos que acontecem com base nos eventos externos, como desabamento de rochas, por exemplo.

Como é medida a intensidade da magnitude de um terremoto?

A intensidade da magnitude de um terremoto é medida através do sismógrafo, onde seus dados serão analisados com base na Escala Richter (que, teoricamente, é medida entre 0 e 10) ou na Mercalli (que foca em medir o poder de destruição dos terremotos, entre I e XII).

Diz-se teoricamente porque nunca ocorreu de fato um terremoto que chegasse ou ultrapassasse o 10, sendo que o terremoto mais forte já catalogado, que aconteceu em 1950, no Chile, apresentou 9,5 graus na Escala Richter.

O sismógrafo é um aparelho que mede com precisão as falhas geológicas da terra, possibilitando a análise em três tipos de movimentos diferentes do solo: o horizontal norte-sul, o horizontal leste-oeste e o vertical cima-baixo.

Mesmo com a sua precisão em captar os tremores da terra, ainda não é possível prever quando esses tremores terrestres irão acontecer, apenas acompanhar e catalogar as áreas mais propensas aos fenômenos.

Gostou desse conteúdo? Então siga o Museu WEG no Instagram para se manter atualizado sobre todas as novidades!

Fontes:

Terremotos – Escola Kids

Terremotos – PrePara Enem

Terremotos – Brasil EscolaTerremotos – Secretaria da Educação

Conheça os principais métodos de ensino do Brasil

Conheça os fundamentos e os objetivos dos principais métodos de ensino do Brasil.

O direito à educação foi universalizado nos últimos 100 anos em diversos países do mundo, ou seja, o que antes era restrito a um pequeno número de pessoas passou a ser uma oportunidade para grande parte da população em idade escolar ou não.

Nesse tempo, muitos educadores transformaram a educação pelo mundo. No Brasil, o surgimento das novas escolas resultou em diferentes metodologias de ensino com propostas distintas, mas com o mesmo objetivo: ensinar. Inclusive, é comum que esses métodos sejam utilizados de maneira mesclada nas escolas. 

Conheça agora os fundamentos e os objetivos dos principais métodos de ensino do Brasil

O que são métodos de ensino?

Para começar, precisamos entender que um método de ensino é o caminho pelo qual se atinge os objetivos de ensino/aprendizagem. Ou seja, o método é um conjunto de ações de ensino que visam garantir que o aluno esteja aprendendo. 

Eles também tornam a aula mais dinâmica e interessante. Ao conhecer os diferentes métodos de ensino, o educador pode promover diversas experiências e oportunidades de aprendizado para seus alunos. Vamos conhecê-los?

Método 1 – Tradicional

A abordagem de ensino tradicional é predominante no país. Seu objetivo está em preparar o aluno para a vida em sociedade por meio de uma relação hierárquica. Nela, o foco está no professor, que detém conhecimentos e repassa-os ao aluno.

O conteúdo é apresentado igualmente para os alunos que recebem metas e prazos para cumprir suas atividades, que são verificadas, avaliadas e pontuadas. Sem atingir a meta mínima, o aluno é reprovado.

Nessas instituições, o aluno é preparado para ir bem em provas como o Enem (Exame Nacional do Ensino Médio) e o vestibular.

Método 2 – Construtivista

Desenvolvida pelo pensador suíço Jean Piaget. A abordagem construtivista traz a ideia central de que o conhecimento é uma construção e que as crianças têm um papel ativo no processo de aprendizagem.

Nela, o conhecimento é ativamente construído pelo sujeito que está aprendendo, e o professor tem o papel de mediar as atividades que estimulem o aprendizado. Cada estudante é visto como alguém que tem um tempo único de aprendizado, e o trabalho em grupo é valorizado.

O construtivismo considera que o desenvolvimento cognitivo acontece por meio de um movimento que Piaget classifica como assimilação e acomodação. Nela, são criadas situações em que o estudante é estimulado a pensar e a solucionar os problemas propostos.

Nessas instituições, também há provas e reprovação.

Método 3 – Montessoriano

Criado pela educadora italiana Maria Montessori, o método de ensino montessoriano dá maior autonomia à criança, que é estimulada pelos adultos a buscar sua autoformação e construção. Assim, ao aprender sozinha, desenvolve seu conhecimento por meio da curiosidade e da independência.

Isso porque o método montessori acredita que é agindo que se adquire o conhecimento. Ao adulto, cabe ordenar e atribuir dificuldade crescente às atividades, respeitando o ritmo de cada aluno.

As classes têm crianças de idades diferentes, e o ambiente da sala de aula é preparado para que o aluno tenha a possibilidade de vivenciar diversas experiências. 

Exemplo de sala de aula seguindo o modelo montessoriano.

Tanto os objetos quanto o mobiliário da sala de aula são feitos em tamanhos e formatos adequados para a criança ter autonomia sobre eles. Neste método, a avaliação é feita a partir da observação dos professores.

Método 4 – Waldorf

Desenvolvido pelo filósofo austríaco Rudolf Steiner, o método Waldorf ficou conhecido em todo o mundo por visar o desenvolvimento integral do aluno, formando as crianças para a vida.

Nele, procura-se equilibrar os aspectos cognitivos (capacidade de adquirir conhecimento) com o desenvolvimento de habilidades artísticas por meio de atividades corporais, manuais, musicais, contato com a natureza e artesanato, por exemplo, além das disciplinas exigidas pela Lei de Diretrizes e Bases (legislação que regulamenta o sistema educacional do Brasil).

São aplicados testes e provas em algumas matérias, e os pais têm papel fundamental para estimular as habilidades dos estudantes em casa.

A avaliação do aluno engloba a execução de trabalhos, o empenho em aprender, o comportamento e a atitude diante das tarefas solicitadas.

O professor acompanha a mesma turma por toda uma etapa (elas são divididas de 0 a 7 anos, de 7 a 14 e de 14 a 21 anos).

Método 5 – Freinet

Apesar de não ser exatamente uma linha pedagógica, o método do pedagogo francês Célestin Freinet também é utilizado em algumas escolas. Ao colocar em prática seus conceitos, o aprendizado acontece por meio do trabalho e da cooperação.

Ou seja, a criança é incentivada a compartilhar suas produções com os colegas de sua classe, de outras turmas ou de escolas diferentes.

Escolas que se identificam com o pensamento de Freinet valorizam também o desenvolvimento da capacidade de análise pelos estudantes.

Algumas atividades comuns são, por exemplo, estudos de campo nos quais as aulas acontecem em locais fora da sala de aula; elaboração de jornais em grupo e debates.

Neste caso, as avaliações levam em conta o progresso do aluno em comparação a seu desempenho anterior, e não em relação aos demais alunos.

Método 6 – Ensino Freireano

O pedagogo Paulo Freire é um dos intelectuais brasileiros mais respeitados no mundo todo graças a sua metodologia de ensino. O método freireano foi criado pelo brasileiro na década de 1960. 

Neste método, a alfabetização não ocorre somente a partir de letras, palavras e frases, mas também com base no dia a dia do estudante, levando em conta sua realidade e os problemas que enfrenta. Outra característica é o diálogo entre aluno e educador, isto é, há uma relação horizontal entre eles.

Na educação freireana, o foco está na liberdade e na autonomia. O professor não é apenas quem faz a mediação do conhecimento, ele também aprende com o aluno a partir do compartilhamento de suas vivências e sabedoria popular.

Bônus: educação não formal

A educação não formal ocorre fora do sistema tradicional de ensino. O processo de ensino e aprendizagem é feito de maneira organizada, mas sem seguir vários requisitos formais, não substitui outros métodos formais, mas existe para complementá-los.

Alunos em visita ao Museu WEG.

Este tipo de educação acontece por meio do desenvolvimento de atividades fora do ambiente escolar, como ONGs, instituições religiosas, visitas a espaços públicos e privados, museus e outras alternativas.

A educação não formal utiliza ferramentas didáticas atrativas, e os espaços devem ser prazerosos para aumentar o interesse dos alunos.

É por isso que o Museu WEG também atua em parceria com os professores para complementar as atividades propostas em salas de aula de maneira divertida e interativa. 

Entre em contato e conheça nossas oficinas educativas on-line e presenciais. Clique aqui para saber mais. 🙂