Tag: eletricidade

O que é eletrostática e quais seus princípios?

Descubra o que é eletrostática e aprofunde seus conhecimentos sobre esse ramo da física que estuda comportamento de cargas elétricas.

Quem curte estudar física, com certeza já se deparou com o tema eletrostática em algum momento da vida. Mesmo quem nunca ouviu o termo, com certeza já presenciou algum exemplo prático no seu dia a dia.

Friccionar as meias no tapete, esfregar o balão no cabelo e sentir os pelos do braço se aproximando da televisão são alguns dos diversos exemplos que as pessoas geralmente experimentam, mas que, na maioria das vezes, não associam ao estudo da ciência.

Quer compreender o porquê destas experiências serem tão relevantes para o ensino da eletrostática e finalmente entender o que é eletrostática? Continue a leitura!

O que é eletrostática?

Eletrostática é um ramo da física destinado ao estudo do comportamento de cargas elétricas em repouso, ou seja, que se mantém “paradas”. O nome “Eletrostática” literalmente é uma junção entre “eletro” (eletricidade) + “estática” (parada).

Você deve estar se perguntando: mas como uma energia parada, estável, pode gerar ações como arrepiar os pelos do braço ou dar choques em outras pessoas?

A resposta é que a eletrostática acaba sendo alterada quando essas cargas entram em movimento, resultando em uma corrente elétrica.

É justamente nesta etapa em que a “eletrostática” muda para a “eletrodinâmica”. Para ficar bem claro de entender, pense na eletrostática como uma pessoa tirando um cochilo e a eletrodinâmica como a sua reação ao ouvir o despertador.

Curiosidade: a história da eletrostática

Antes de entrarmos em um assunto técnico, nada melhor que passear pela história da eletrostática!

Como este ramo da física é bem abrangente e antigo, é difícil apresentar com certeza quem realmente foi o descobridor deste estudo de energias estáticas.

Porém, conforme estudos de Maurício Ruv Lemes, o descobridor da eletrostática foi Tales, em 600 a.C. Tales concluiu a existência da eletrostática ao atrair restos de palha após triturar o âmbar.

Séculos e mais séculos depois, diversos estudiosos publicaram conteúdos relevantes sobre o assunto, mas se formos apresentar todos eles, ficaremos aqui por muito tempo. Então, vamos focar só em Tales!

Propriedades da eletrostática

A eletrostática é composta por algumas propriedades específicas destinadas à compreensão deste ramo da física: a Carga Elétrica, a Força Elétrica, o Campo Elétrico, o Potencial Elétrico e a Energia Potencial Elétrica.

Ficou confuso? Então confira o que cada uma delas abrange:

Carga Elétrica

Representada como Coulomb (C), esta é uma propriedade própria das partículas fundamentais de uma matéria, como a massa de um corpo, os elétrons e prótons presentes, entre outras.

Diferente de outras propriedades físicas, a Carga Elétrica é limitante, abrangendo apenas corpos que possuem um valor mínimo (que é BEM pequeno). A famosa Carga Fundamental. Você pode calcular a Carga Elétrica de um corpo seguindo a equação:

Q = n . e

Tabelinha de nomenclatura:

Q = Carga Elétrica (medido em C)

n = Quantidade de elétrons

e = Carga fundamental

Força Elétrica

Sabe aquele conceito de “os opostos se atraem”? Na física isso também é verdade!

Quando corpos diferentes contam com a mesma carga elétrica, eles se repelem, e o oposto acontece quando a carga elétrica é diferente. Isso ocorre porque todos os corpos estão constantemente tentando se equivaler, energeticamente falando.

É justamente por isso que levamos choques ao tocar em algumas pessoas, por exemplo. Para calcular a Força Elétrica é só seguir a fórmula:

F = k . (q1 . q2) / d²

Tabelinha de nomenclatura:

F = Força Elétrica (medida em N)

k = Constante Eletrostática no Vácuo

q1 e q2 = Cargas Elétricas 1 e 2 (medida em C)

d = Distância entre as Cargas (medida em M)

Campo Elétrico

Como você já deve ter percebido na explicação de Força Elétrica, no mundo da física, toda carga elétrica influencia, de alguma forma, o espaço em que está inserida. Isso acontece graças ao seu Campo Elétrico.

De forma bem resumida e simples, o Campo Elétrico é a influência exercida ao redor de cada corpo, de cada carga elétrica.

E = (k . Q)/d²

Tabelinha de nomenclatura:

E = Intensidade do Campo Elétrico (Medida em N/C)

k = Constante Eletrostática no Vácuo

Q = Módulo da Carga (C)

d = Distância entre a Carga e um Ponto do Campo

Potencial Elétrico

O Potencial Elétrico de um corpo é uma quantidade de energia fornecida por um campo elétrico, ou seja, é a quantidade necessária de força que precisa ser exercida para que a carga elétrica entre em movimento.

A fórmula que possibilita este cálculo é:

U = k . Q/d

Tabelinha de nomenclatura:

U = Potencial Elétrico (medido em V)

k = Constante Eletrostática no Vácuo

Q = Carga Elétrica Geradora (medida em C)

d = Distância entre a Carga e um Ponto do Campo (medida em M)

Energia Potencial Elétrica

E, por fim, chegamos à propriedade de Energia Potencial Elétrica que, nada mais é que a energia gerada pela fixação entre duas cargas elétricas.

Esta propriedade física diz respeito àquela partícula que já está inserida em um campo elétrico, ou seja, que necessitará da realização de um Trabalho para que ela entre em movimento. Para calcular a Energia Potencial Elétrica, é só seguir a fórmula:

V = Ep/Q

Tabelinha de nomenclatura:

V = Potencial Elétrico (medido em V)

Ep = Energia Potencial Elétrica (medida em J)

Q = Carga Elétrica (medida em C)

Você sabia?

No Museu WEG você pode experienciar uma invenção de manifestação da energia eletrostática com o Gerador de Van de Graaff.

Desenvolvido para atingir tensões mais elevadas de energia, Jemison Van de Graaff, em 1929, criou este tão conhecido e querido experimento presente no Museu WEG.

De forma prática, o Gerador Van de Graaff é um motor que, ao movimentar uma correia feita de material isolante, alcança altas tensões. A experiência prática resulta no arrepio dos pelos do corpo, sendo muito divertida e educativa para exemplificar o estudo da eletrostática.

Você pode ver de perto o Gerador Van de Graaff acessando o Tour Virtual do Museu WEG! Assim você aprende mais e conhece este experimento sem sair de casa!

OBS: É bem mais legal experienciar o Gerador Van de Graaff pessoalmente no Museu WEG.

Curtiu este conteúdo? Então não deixe de seguir o Museu WEG no Instagram! Assim você sempre será avisado quando assuntos como este estiverem disponíveis.

Fontes:

Eletrostática – PreparaEnem

Eletrostática – Mundo Educação

Eletrostática – Brasil Escola

O que é eletrostática? Aprenda como as cargas elétricas se comportam! – Beduka

O que você sabe sobre os peixes-elétricos?

Como estes animais vivem e como são capazes de gerar energia e dar choques?

A natureza não cansa de surpreender, ela é cheia de maravilhas e incógnitas e, certamente, um animal que vive na água e emite descargas elétricas é uma delas!

Muito se fala sobre os peixes-elétricos, mas poucas pessoas sabem como estes animais vivem e como são capazes de gerar energia e dar choques. Será que levar choque de peixe-elétrico dói? Por que ele emite descargas elétricas? Existem peixes-elétricos no Brasil?

Separamos algumas curiosidades para responder estas e outras perguntas! Confira.

O que são peixes-elétricos?

Peixe-elétrico é o nome que usamos para identificar diversas espécies de peixes que dão choque — ou seja, emitem descargas elétricas naturalmente. 

Esse grupo de peixes detecta e gera campos elétricos no ambiente em que ocorrem, utilizando dessa característica para comunicação, detecção de presas, defesa, reprodução e até mesmo para se movimentar e localizar objetos ao seu redor quando há ausência de luz. 

Tipos de peixes-elétricos

Existem diversas espécies de peixe-elétricos, eles vivem tanto em água doce como na água salgada. Dentre elas estão o bagre-elétrico-africano, que pode ser encontrado no rio Nilo, na África, e vários tipos de arraias elétricas presentes nos oceanos do mundo todo.

Para ter uma ideia da diversidade, atualmente existem mais de 250 espécies desses peixes. Eles podem ser encontrados desde o Rio Salado (La Plata) na Argentina, até o Rio San Nicolas, no Sul do México, porém é no Brasil, na região Amazônica, que encontra-se 80% da diversidade de espécies de peixes-elétricos.

No Brasil, os peixe-elétricos mais conhecidos são miracéu, bagre elétrico, poraquê e raia elétrica marinha, sendo o poraquê, também conhecido como enguia-elétrica (embora não seja uma enguia verdadeira) e treme-treme, o mais famoso. O nome vem do tupi e significa “o que faz dormir”. 

Os poraquês vivem nas águas amazônicas e nos rios do Mato Grosso e podem chegar a 2,5 metros de comprimento. A espécie é a única que produz descargas elétricas fortes, usadas para caça e defesa. 

Peixe-elétrico descoberto na Amazônia emite 860 volts

Esta é a descarga mais forte já registrada em animais. Para capturar e pesquisar a espécie de peixe-elétrico poraquê, o pesquisador brasileiro Carlos David de Santana precisou entrar em igarapés na Amazônia e, mesmo usando luvas de borracha, alguns choques foram inevitáveis.

O Electrophorus voltai é uma espécie de peixe-elétrico descoberta na Amazônia

A pesquisa de cinco anos resultou na descoberta de duas novas espécies de peixe elétrico — uma delas capaz de dar uma descarga de até 860 volts, a maior voltagem já registrada em um animal. Até então, o recorde era de 650 volts.

O recordista foi batizado de Electrophorus voltai, em homenagem ao físico Alessandro Volta, criador da bateria elétrica.

Como esses animais são capazes de produzir a eletricidade? 

Esses peixes possuem um órgão especializado — chamado de órgão elétrico —, que é composto por células que se diferenciaram a partir dos músculos durante sua evolução.

Assim como os nossos músculos geram eletricidade ao se contraírem, pela entrada e saída de íons de suas células, cada eletrócito (célula do órgão elétrico) também se carrega e descarrega o tempo todo. Cada célula nervosa típica gera um potencial elétrico de cerca de 0,14 volt.

Cada vez que os eletrócitos são estimulados por um comando que vem do cérebro, eles produzem uma pequena descarga elétrica. Como o órgão elétrico é formado por milhares de eletrócitos que se descarregam ao mesmo tempo, um peixe-elétrico grande, como é o caso do poraquê, pode gerar mais de 600 volts numa única descarga. 

Peixes-elétricos são perigosos?

Embora a espécie descoberta na Amazonia, a Electrophorus voltai, seja capaz de produzir um descarga de 860 volts — quase quatro vezes a voltagem de uma tomada doméstica de 220 volts —, ela é considerada menos perigosa para o ser humano do que a rede elétrica presente nas residências, pois tem baixa amperagem e dura poucos segundos. 

Como a maioria desses animais emite correntes de baixa voltagem, os choques nos seres humanos são quase imperceptíveis. Mas o choque de espécies como a Electrophorus voltai pode causar danos se atingir regiões que afetam músculos, nervos ou o coração. Então, se ver um peixe-elétrico por aí, nossa dica é não tentar brincar com ele, combinado? 😉

E, já que o assunto é descarga elétrica, o que você sabe sobre os raios? Conheça algumas curiosidades que te deixarão de cabelo em pé!

Invenções ligadas à eletricidade que mudaram o mundo

Muitas invenções ligadas à eletricidade mudaram o mundo, mas algumas têm destaque. Confira a lista!

Uma das principais características do ser humano é a capacidade de lidar com situações de maneira criativa, criando meios e ferramentas para solucionar problemas ou simplesmente para compreender melhor o universo. Nessa bagagem, está a descoberta do fogo, a criação da roda, a invenção da escrita e até a descoberta do DNA, citando apenas alguns exemplos.

Entre as invenções pelo mundo mais significativas e também mais importantes para nossa evolução, está a eletricidade, é dela que advém parte do mundo moderno em que vivemos hoje.

Muitas invenções ligadas à eletricidade mudaram o mundo, mas algumas têm destaque por sua importância e pela maneira que afetaram nosso modo de agir e pensar nos dias atuais. 

Invenções elétricas de importância mundial

1. Semicondutores

Os semicondutores são a base de todos os aparelhos eletrônicos da era digital moderna. São pequenos chips que fazem parte de núcleos essenciais de smartphones e smart TVs até dispositivos médicos e sistemas militares.

Por serem, em sua maioria, feitos de silício, estão por trás do apelido “Vale do Silício”, lar das maiores empresas de computação do mundo. O primeiro eletrônico com semicondutores foi apresentado em 1947 por John Bardeen, Walter Brattain e William Shockley.

2. Lâmpada

James Bowman Lindsay, em 1835, apresentou ao mundo a primeira lâmpada elétrica. No entanto, sem ter consciência da importância de sua invenção, ele não se preocupou em registrar sua patente e abandonou o projeto para trabalhar em tecnologias de telegrafia sem fio. Graças a inventores como Thomas Edison, o invento se manteve vivo e recebeu a devida importância, tornando-se praticamente indispensável nos dias atuais.

3. Pilhas e baterias

Em meados de 1779, o cientista italiano Alessandro Volta apresentou a pilha voltaica, dando início ao que, tempos depois, iria se transformar em baterias de íon-lítio que utilizamos em nossos aparelhos eletrônicos.

Sem essa invenção, dificilmente teríamos aparelhos que não necessitam ficar o tempo todo conectados a uma tomada para funcionar corretamente.

4. Telefone

Há controvérsias sobre a invenção do telefone. Segundo o Congresso dos Estados Unidos, o aparelho foi inventado por volta de 1860 pelo Italiano Antonio Meucci, que o chamou de “telégrafo falante”.

Mas coube a Alexander Graham Bell, em 1876, aprimorar o invento e apresentar as bases do que viria a se transformar nos aparelhos presentes nas casas de grande parte da população mundial. Foi Graham Bell o primeiro a produzir o dispositivo em grande escala, fazendo com que, em 1886, 150 mil residências nos Estados já tivessem a invenção.

5. Televisão

Desde 1926, a televisão tem sido utilizada como meio de levar entretenimento, notícias e educação a grande parte da população mundial. Especialistas concordam que o título de “pai da televisão” é do físico escocês John Logie Bardie. Já que seus experimentos em 1925 resultaram na primeira transmissão de imagens em nível de cinza em movimento.

Em 1928, aconteceu a primeira transmissão transatlântica, entre Londres e Nova York, e a primeira transmissão ao vivo ocorreu três anos depois. Em 1930, Bardie lançou um sistema para transmitir sons de maneira simultânea com as imagens, é aí que a televisão surgiu oficialmente.

6. Internet 

A rede mundial dos computadores começou a dar os primeiros passos durante a década de 60. Foi originalmente usada pelo exército norte-americano para transmitir dados entre redes pequenas. Em pouco tempo, a internet progrediu e cresceu em escala assustadora.

Seu potencial comercial começou a ser explorado, e hoje é uma das principais ferramentas de trabalho e comunicação no mundo todo.

O primeiro site do mundo foi criado em 06 de agosto de 1991 por Tim Berners-Lee, físico do Centro Europeu de Pesquisa Nuclear, considerado o pai da Web. A página nomeada de “The Project” pode ser acessada até hoje e conta com a descrição dos principais fundamentos da World Wide Web.

7. Motor elétrico

Foram quase três séculos entre os primeiros estudos, as primeiras pesquisas e invenções até o surgimento dos motores elétricos em 1886. A descoberta é atribuída ao cientista alemão Werner Siemens, inventor do primeiro gerador de corrente contínua autoinduzido.

Hoje os motores elétricos são utilizados no dia a dia doméstico e industrial, e é quase impossível pensar na vida sem eles.

Atualmente, milhares de inventos facilitam nossa vida. Eles são resultados de muito estudo e experimentos de inventores e cientistas que não mediram esforços por suas criações.

É por isso que a ciência é tão importante para nossa vida. Sem ela, não existiria a eletricidade e, consequentemente, nenhuma das invenções citadas acima. Um super viva às grandes descobertas! 🙂

Leia também: Como seria o mundo sem eletricidade?

Como seria o mundo sem eletricidade?

A energia elétrica foi responsável por diversos avanços no mundo.

A humanidade passou por diversos estágios em sua história evolutiva. Algumas descobertas nesses estágios moldaram nosso futuro – entre elas, está a eletricidade. A energia elétrica foi responsável por diversos avanços no mundo, e seu desenvolvimento pôde proporcionar a evolução da tecnologia.

Ao pensar em um mundo sem eletricidade, milhares de dispositivos não existiriam, como por exemplo: computadores, celulares, geladeiras, chuveiros elétricos, postes de luz e elevadores. Você já imaginou viver sem depender da energia elétrica? 

Vivendo em um mundo sem eletricidade

Grandes feitos da humanidade foram realizados sem eletricidade. Porém, a partir da sua descoberta, vivemos em um mundo que depende dela para continuar a evolução. 

Praticamente todas as áreas da nossa vida mudariam sem eletricidade. Ao começar pela indústria médica, que entraria em colapso. Doenças extintas poderiam voltar, e muitos diagnósticos e tratamentos deixariam de existir, ou se tornariam medievais.

Nós também teríamos que reaprender a cozinhar, lavar, transportar, se divertir e trabalhar sem os dispositivos eletrônicos que usamos no dia a dia. A eletricidade também é, praticamente, o coração da civilização trabalhadora, e muitos empregos teriam que ser reinventados.

Veremos abaixo algumas áreas que seriam extremamente afetadas caso a energia elétrica não existisse.

Fim do mundo moderno

A eletricidade é responsável pelo funcionamento de muitos aparelhos e máquinas. Sem energia elétrica, a tecnologia seria escassa, muitas pessoas iriam trabalhar nos campos até o anoitecer. Praticamente não haveria movimento à noite, muito menos trabalhos noturnos, já que não haveria iluminação adequada.

Trens elétricos não existiriam, e muitas pessoas não poderiam se deslocar para trabalhos longe de casa. Nas casas, o bombeamento de água de poços seria uma tarefa manual. Computadores, smartphones e internet também não existiriam, logo, nada de redes sociais. 

Em contrapartida, a vida sem eletricidade traria outras demandas. Sem televisão, o homem poderia procurar mais por teatros, por exemplo, e a comunicação à distância voltaria a ser por cartas. Certamente também haveria menos poluição tecnológica. 

A cozinha sem eletricidade

Um dos lugares mais importantes de uma residência, onde é preparada a alimentação da família, também sofreria muitos impactos sem eletricidade.

É assim que seria nossa cozinha: o fogão e o forno seriam a lenha, e, sem geladeira, não seria possível fazer gelo ou sorvetes, por exemplo. Os eletrodomésticos que conhecemos hoje como micro-ondas, batedeira e liquidificador também não existiriam.

Seria necessário desenvolver técnicas para conservar alimentos durante o verão e o inverno, lugares frios e escuros como cavernas poderiam armazenar o alimento de caça e coleta. Muitos alimentos deveriam ser cozidos logo após a coleta para durar mais tempo. E é na cozinha que encontramos um item capaz de gerar energia sem eletricidade, veja aqui como é possível gerar luz a partir de uma batata.

O fogo como aliado

Sem o domínio da energia elétrica, as pessoas teriam o hábito de viver conforme a luz natural. Isso significa que, no início da noite, seria a hora de dormir, e, ao raiar o sol, seria hora de começar a rotina do dia.

O fogo seria muito utilizado para iluminação. Fogueiras seriam acesas a fim de aquecer e iluminar o espaço de convivência. Não haveria estufas nem aquecedores elétricos. Nos dias frios, precisaríamos de fogo, fogão a lenha ou lareiras, que, além de aquecer, acolhem todos os membros da família em comunhão em uma noite fria.

Lista de escassez no mundo sem eletricidade

  • Não haveria aquecedor elétrico.
  • Não haveria ventilador nem condicionador de ar elétrico.
  • Faltaria luz em ruas e residências.
  • Adeus aos semáforos e pedágios automáticos.
  • Não haveria chuveiro elétrico, geladeira e todos os eletrodomésticos que conhecemos hoje.
  • Não haveria refrigeração para conservação de alimentos.
  • Fim do equipamento de escritório (copiadoras, scanners, computadores, internet e telefones).
  • A maioria dos nossos equipamentos médicos não existiria.
  • O homem só seria capaz de trabalhar durante o dia.
  • Grande parte da produção seria feita à mão porque as fábricas não teriam linhas de montagem.

Em resumo, nossa vida sem eletricidade remete ao passado. O instinto de sobrevivência dos nossos antepassados, como busca pela caça e o uso do fogo, faria parte do nosso dia a dia. Como muitas pessoas precisariam de lenha para seus fogões e suas lareiras, seria necessária uma política de regras de plantio, ou nossas matas estariam em constante perigo por causa do alto número de desmatamento. 

A comunicação global praticamente não existiria, e só saberíamos das notícias por meio do boca a boca. Muitas coisas que hoje são simples poderiam ser verdadeiros desafios no nosso dia a dia.

 Já parou para pensar que, se vivêssemos em um mundo sem eletricidade, você não estaria agora lendo este conteúdo? Neste artigo, conseguimos imaginar um pouco sobre como seria um mundo sem eletricidade, mas você já pensou como seria um mundo sem sol? Clique aqui e continue lendo para saber.

Eletricidade: países e exemplos de fiação subterrânea pelo mundo

A fiação subterrânea pode abranger toda a rede elétrica, bem como a rede de cabos de telefonia e TV.

Além da questão estética que confere um visual urbanístico mais agradável às cidades, a fiação subterrânea evita problemas de descarga na rede elétrica, diminui os apagões nos bairros e reduz riscos de queda de raios. Cidades como Barcelona, Londres, Amsterdã, Paris e Washington são citadas com frequência por engenheiros e arquitetos como exemplos de cidades que enterraram praticamente toda a sua fiação. 

Em contrapartida, a realidade brasileira possui apenas uma pequena parte da rede de eletricidade feita por redes subterrâneas. Neste artigo veremos países e exemplos de fiação subterrânea pelo mundo.

Fiação subterrânea: o que é

É comum nos depararmos com postes e fios de energia cortando o céu das cidades. Porém o cabeamento aéreo pode representar alguns perigos. Além da poluição visual e do alto custo de manutenção, ele está exposto ao risco de vandalismo, ventanias e trovoadas.

Uma das soluções inteligentes para substituir esse tipo de fiação é a subterrânea, ela pode abranger toda a rede elétrica, bem como a rede de cabos de telefonia e TV, e apresenta diversas vantagens do ponto de vista da infraestrutura das cidades. 

 Além da poluição visual, o cabeamento aéreo pode representar alguns perigos 

O procedimento para instalação da rede subterrânea consiste na instalação de dutos enterrados em valas. O sistema subterrâneo é mais duradouro e, em longo prazo, acaba sendo economicamente mais viável. Isso acontece porque os custos com reparos chegam a ser até 80% menores do que na rede aérea, exigindo menos substituições de cabos e consertos mais espaçados.

As redes subterrâneas tiveram as primeiras experiências no Brasil ainda em 1938 no Rio de Janeiro, o que na época se justificava apenas como medida estética.

Em Santa Catarina, onde está localizada a matriz da WEG, várias cidades já deram início – mesmo que em pequena porcentagem – à instalação de redes subterrâneas. É o caso, por exemplo, de Joinville, São José, Florianópolis e Lages.

Instalação da fiação subterrânea 

A fiação subterrânea possui um sistema composto por dutos embutidos separadamente no solo a uma profundidade de aproximadamente 50 cm. As concessionárias de energia elétrica utilizam geralmente o duto de PEAD – Polietileno de alta densidade – nessas instalações.

A mudança da rede elétrica aérea para a subterrânea é bastante complexa. Os dutos são apoiados em uma base de concreto. Depois, a cobertura é feita, geralmente, com areia para que seja possível acompanhar a movimentação da terra de modo que, ao passar um caminhão, por exemplo, o impacto da vibração não traga prejuízos. Dependendo da situação, no final, a via volta a ser coberta por terra ou pavimentação.

Na sua extensão, são instaladas caixas de passagem a distâncias variáveis, e pode ser preciso fazer caixas maiores denominadas câmaras de transformação – salas subterrâneas, que abrigam os equipamentos das concessionárias, como transformadores e chaves de desligamento. Essas salas são colocadas nas calçadas e, em casos específicos, em áreas também acessíveis pelos consumidores.

Depois de enterradas, as tubulações são interligadas com os imóveis dos consumidores. As caixas de passagem ao longo da extensão da via servem também de caixa de derivação para atender o consumidor final, fazendo a ligação com cada uma das casas ou dos escritórios.

Exemplos de fiação subterrânea 

São Paulo: a energia da região central da cidade de São Paulo é subterrânea há mais de 20 anos. A Enel Distribuição São Paulo realizou dois projetos de conversão: um na Vila Olímpia, onde foram enterrados fios elétricos em 13 vias da região, correspondentes a 4,2 quilômetros de extensão, e outro na área do Mercado Municipal com nove quilômetros em 40 vias. Existe um decreto que obriga a cidade a enterrar a cada ano cerca de 250 quilômetros de cabos. O projeto em ruas como a Oscar Freire foi iniciativa de empresários. 

Londres: a empresa responsável pela infraestrutura elétrica em Londres investiu mais de US $1 bilhão nos últimos anos para criar um sistema de linhas de transmissão em túneis mais profundos, substituindo a fiação que já ficava embaixo da camada de asfalto. 

Buenos Aires: apesar de ainda ter muita rede aérea, o governo da capital argentina tem avançado na troca dos cabos aéreos por fios subterrâneos. No centro da cidade, a substituição já foi feita. A medida foi incluída em uma grande reforma na área promovida pela prefeitura da cidade na década de 1950. Em outros bairros, está proibida a instalação de novas fiações sobre o solo. 

Paris: a rede elétrica subterrânea de Paris começou a ser instalada em 1910. Conhecida como Cidade Luz, a capital francesa tem toda a sua fiação no subsolo há mais de 60 anos. 

Vantagens e desvantagens da fiação subterrânea

Vantagens da fiação subterrânea

  • Maior confiabilidade
  • Menores indicadores de interrupção/queda de energia
  • Vida útil maior do que 30 anos
  • Paisagem urbana mais limpa

Desvantagens da rede subterrânea

  • Alto custo de implantação (varia de três a 15 vezes mais do que a aérea)
  • Manutenção corretiva demorada pela dificuldade de localização de defeito
  • Interferência de outras empresas (de telefonia, gás, água, TV a cabo)
  • Operação e manutenção especializadas

Agora que você aprendeu um pouco mais sobre a fiação subterrânea pelo mundo, que tal conferir quais são os maiores parques eólicos do Brasil? Clique aqui e saiba mais.

A física explica: por que às vezes levamos “choque” ao encostar em um objeto ou pessoa?

Já aconteceu com você de tocar em alguma pessoa ou objeto e levar um choque que, às vezes, chega até a soltar faíscas?

Já aconteceu com você de tocar em alguma pessoa ou objeto — como uma maçaneta ou registro do chuveiro —  e levar um choque que, às vezes, chega até a soltar faíscas? Isso acontece devido à eletricidade estática, a mesma que faz seu cabelo ficar meio arrepiado de vez em quando.

A gente não percebe, mas o corpo humano é um bom condutor de eletricidade, ou seja, permite que cargas elétricas (os elétrons) se movimentem livremente, possibilitando a passagem de corrente elétrica. O tempo todo estamos nos carregando e descarregando. Muitas vezes nosso corpo fica tão eletrizado (com acúmulo de elétrons) que acaba descarregando essa energia no primeiro objeto condutor (metal ou o corpo de outra pessoa, por exemplo) que aparece pela frente.

Quando o corpo possui a mesma quantidade de prótons e elétrons, estamos neutros e não saímos dando ou levando choques por aí, mas quando a carga estática de uma pessoa está diferente da de outra ou do objeto que ela toca, ou seja, uma está mais carregada que a outra, o contato resulta em troca de cargas elétricas, de onde vem o famoso choquinho! Esse processo de perda ou ganho de elétrons chama-se eletrização. A sensação não traz maiores danos porque a corrente gerada é muito baixa. 

Apesar de não terem uma época certa para acontecer, os choques deste tipo são mais comuns nas estações mais secas e no inverno, quando muita gente usa roupas de lã sintética, material que mantém a carga elétrica. Quando a pessoa está descalça, essa corrente é liberada aos poucos e não chega a ser percebida e, quando a pessoa está com um calçado com solado de borracha, que serve como isolante, ela acumula maior carga. Nesse caso, um simples aperto de mão em outra que não tem a mesma carga estática pode fazer com que ambas sintam um leve choque, pois o excedente de carga em uma das pessoas se distribui, passando parcialmente para a outra.

A maçaneta do carro é outro lugar muito comum de sentirmos a sensação. Isso, porque o carro acumula carga ao se movimentar e o atrito com o ar faz com que a carga elétrica fique na superfície externa do carro, que é de metal, se estivermos com acúmulo de carga elétrica, ao tocarmos na porta do automóvel podemos sentir o choque.

Algumas pessoas podem levar choques ao encostar na porta de um automóvel

O choque é o mesmo para todo mundo?

Não, a intensidade pode variar de pessoa para pessoa. Sendo de maior intensidade e dor. A explicação é a resistência do circuito e até a parte do corpo que foi exposta ao choque. Cada pessoa apresenta uma resistência diferente, pois cada indivíduo é composto por proporções diferentes entre os tecidos que formam o corpo.

O valor mínimo de corrente que uma pessoa pode perceber é de 1 miliampère. Já, com uma corrente de 10 miliàmperes, a pessoa perde o controle dos músculos, sendo difícil abrir as mãos para se livrar do contato. 

Apesar de não poder evitar, se isso te incomoda, a dica é aumentar a área de contato. Por exemplo: em vez de encostar um dedo, encoste a mão inteira, o braço ou a perna, isso aumentará a área de transição e fará com que você sinta menos. Apesar de ser uma sensação estranha, não se preocupe, a corrente desse tipo de choque é muito pequena e não te faz mal.  😉

Benjamin Franklin, ciência e eletricidade

Em 1706 nascia alguém muito importante para a história da ciência e da eletricidade. Conheça essa história!

Em 1706 nascia alguém muito importante para a história da ciência e da eletricidade. Estamos falando de Benjamin Franklin que, durante sua vida, foi um grande diplomata, escritor, jornalista, filósofo político e cientista norte-americano.

Para se ter ideia da sua importância, Benjamin Franklin assinou três documentos principais na criação dos Estados Unidos: a “Declaração da Independência”, o “Tratado de Paz” e a “Constituição”. Como cientista, investigou e interpretou o fenômeno elétrico da carga positiva e negativa, estudo que levou mais tarde à invenção do para-raios.

A influência e os benefícios de Benjamin Franklin transformaram a Filadélfia na cidade líder das colônias inglesas. Em 1731, com 25 anos, fundou a primeira biblioteca circulante dos Estados Unidos. Criou o Corpo de Bombeiros em Filadélfia e contribuiu para a formação da primeira companhia norte-americana de seguros contra fogo. Em 1740 ajudou a fundar a Academia da Pensilvânia, que mais tarde se transformou na Universidade da Pensilvânia.

Autodidata, Benjamin Franklin nunca deixou de estudar e aprendeu diversas línguas, tocava vários instrumentos e se dedicava às ciências. Em 1737 escrevera sobre terremotos. Em 1741 inventa um aparelho de aquecimento dos lares. Logo concentra sua atividade em pesquisas científicas. Em 1752, através de diversos experimentos em eletricidade, inventa o para-raios e criou termos técnicos que são usados até hoje, como “bateria” e “condensador”. Criou também as lentes bifocais.

 

Benjamin Franklin e a energia elétrica

Iniciando sua pesquisa sobre estática, Benjamin Franklin deu início a vários experimentos científicos para que comprovasse suas teorias sobre eletricidade, como a que sugeria que ela e os raios teriam a mesma natureza. Após vender bens e negócios, teve mais tempo e recursos para suas pesquisas, o que lhe rendeu uma reputação internacional. Seu estudo mais famoso depois do descobrimento da energia foi quando descobriu as cargas positivas e negativas em raios e como estes fenômenos tinham sua origem elétrica.


Em outubro de 1752, ao empinar uma pipa em meio a uma tempestade de raios, Benjamin Franklin resolveu fazer um experimento. O objeto era simples, usou um fio de metal para empinar uma pipa de papel. Este fio estava preso a uma chave, também de metal, manipulada por um fio de seda. Franklin a soltou junto com o filho e observou que a carga elétrica dos raios descia pelo dispositivo.

Todos os documentos que escreveu citam os perigos da experiência e como estava consciente dos riscos, por isso, estudiosos acreditam que Benjamin Franklin não fez exatamente como descreveu, pois a experiência teria sido fatal para o inventor.

A perigosa experiência comprovou para a comunidade científica da época que o raio é uma corrente elétrica de grandes proporções. Mais tarde, Franklin demonstrou ainda que hastes de ferro ligadas à terra e posicionadas sobre ou ao lado de edificações serviriam de condutores de descargas elétricas atmosféricas. Estava inventado o para-raios.

Benjamin Franklin propagou suas ideias através de uma carta, sugerindo a ampla instalação dessas estacas de proteção contra a ação dos raios. A ideia espalhou-se rapidamente e, apenas um ano depois, um padre construía o primeiro para-raios na Europa.

Hoje, um para-raios é composto por hastes e cabos metálicos, colocados no ponto mais alto do local a ser protegido. Estes cabos, que ligam o topo de um prédio ao solo, recebem as descargas dos raios, direcionando-as para a terra. A outra extremidade do fio condutor é ligada a uma barra metálica enterrada no solo, que recebe a corrente elétrica.

ben1

De fato, Benjamin Franklin foi uma personalidade notória e de grandes contribuições para o avanço da Nação Americana e da história da ciência e eletricidade. Até hoje é o seu rosto que ilustra a mais valiosa moeda internacional, e de mais alto valor americano, a nota de 100 dólares.

Pilha de Bagdad: a misteriosa pilha milenar

A pilha de Bagdad é o equipamento elétrico mais antigo que se tem notícias, segundo especialistas, ela possui aproximadamente 2000 anos.

A pilha de Bagdad é o equipamento elétrico mais antigo que se tem notícias, segundo especialistas, ela possui aproximadamente 2000 anos e, apesar de bem rústica, o artefato antigo tem todas as características de uma pilha comum.

Foi na década de 30 que o arqueólogo alemão Wilhelm Konig descobriu em um vilarejo próximo a Bagdá, no Iraque, um misterioso vaso de argila de 13 centímetros de altura, o artefato era uma ânfora de barro contendo um cilindro feito de uma liga de cobre e estanho, com uma barra de ferro suspensa dentro dele. Por possuir sinais de corrosão, foram realizados testes na peça que revelaram a presença de alguma substância ácida, possivelmente vinagre ou vinho. Em resumo, o arqueólogo havia encontrado uma antiga pilha.

No total foram encontradas 12 pilhas de Bagdad datadas de 200 anos antes de Cristo e, mesmo depois de tantos anos desde o seu descobrimento, elas continuam intrigando os pesquisadores e gerando muitas discussões: afinal, para que as pessoas de 2 mil anos atrás precisavam de pilhas? 

pilhas Fonte da imagem: Reprodução/World Mysteries

 

Mistérios e controvérsias

As pilhas intrigam estudiosos até hoje, as controvérsias começam pela própria descoberta dos artefatos. Os registros sobre as escavações são escassos, foram pobremente documentos pelo arqueólogo alemão. Até hoje não existe um consenso se Konig encontrou os objetos no sítio arqueológico ou se os encontrou nos porões do Museu de Bagdá, onde depois se tornou diretor.

Outra controvérsia é em relação à idade das baterias, já que o estilo dos vasos pertenceria a um período posterior — entre 225 e 640 d.C. —, tornando os objetos muito mais “jovens” do que o apontado por Konig. No entanto, a maior discussão mesmo fica por conta da utilidade dos misteriosos objetos, pois não existe qualquer registro histórico que se refira a eles. Teriam os persas antigos algum conhecimento sobre os princípios da eletricidade?

 

Réplicas funcionais e possíveis utilidades

Por mais que hajam discussões sobre onde foram encontradas, há quanto tempo e se os antigos tinham conhecimento suficiente para fabricá-las, as pilhas eram capazes de conduzir uma corrente elétrica, este fato foi comprovado a partir de diversas réplicas criadas por pesquisadores no mundo todo.

Em 1940, o engenheiro americano Willard Gray construiu uma réplica da pilha de Bagdá e, usando uma solução de sulfato de cobre, conseguiu gerar cerca de meio volt de eletricidade. Nos anos 70, o egiptólogo alemão Arne Eggebrecht fez a bateria funcionar melhor ainda com um ingrediente abundante na antiga Mesopotâmia: com suco de uva, a pilha produziu 0,87 volt de energia. As réplicas indicam que as baterias eram capazes de produzir voltagens entre 0,8 e quase 2 volts. Se fossem conectadas — apesar de nunca terem sido descobertos fios condutores entre os artefatos —, as baterias poderiam produzir voltagens ainda mais altas.

Uma das hipóteses para o uso da pilha é a medicina – os gregos antigos, por exemplo, usavam peixes elétricos como analgésico. Mas a corrente gerada é pequena demais. Outra possibilidade é a aplicação da energia para galvanizar metais na ourivesaria. Contudo, nenhum material que pudesse conter as baterias jamais foi encontrado, e não existem registros confiáveis sobre a réplica do suposto processo de galvanização em laboratório. 

O mistério da finalidade das baterias de Bagdá continua e, embora longe de ser completamente resolvida, a polêmica exalta o imaginário popular. Se a descoberta estiver correta, os artefatos antecedem em pelo menos 1800 anos a invenção da célula eletroquímica de Alessandro Volta, que deu origem ao que conhecemos atualmente como pilha elétrica. Já imaginou?

Você sabia que no calendário nacional existe uma semana dedicada à Ciência e Tecnologia?

E que o período foi criando pelo Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) para aproximar o tema da população, por meio de eventos envolvendo instituições de todo o País?

Fique ligado que a “Semana Nacional de Ciência e Tecnologia” é neste mês e acontece entre os dias 21 e 27 de outubro.

Várias instituições estão preparando ações educativas para comemorar a data e é claro que o Museu WEG de Ciência e Tecnologia não poderia ficar de fora, afinal o nosso acervo está totalmente direcionado a esta temática e nós adoramos compartilhar conhecimento com os nossos visitantes.

Para marcar a data vamos oferecer uma palestra sobre: “Geração de Energia através de Resíduos Sólidos Urbanos (RSU)”. O palestrante será o Engenheiro Alexandre dos Santos Fernandes, Gerente do Depto. Centro de Negócios de Energia da WEG.

A apresentação será direcionada para estudantes, colaboradores da WEG e todos que se interessam pelo tema!  A participação é gratuita e a inscrição deve ser feita antecipadamente AQUI.

Não fique de fora, aproveite a Semana Nacional de Ciência e Tecnologia para atualizar conhecimentos e visitar o maior Museu de Ciência e Tecnologia do Sul do Brasil.

Palestra: Geração de Energia através de Resíduos Sólidos Urbanos (RSU)

Dia: 22/10/2019

Horário: 19h às 20h30

Local: Museu WEG de Ciência e Tecnologia

Inscrições: https://forms.gle/LDHjPX19gxtLwQ2c6

 

Como funcionam as usinas nucleares?

O Brasil possui um elemento radioativo em abundância: o urânio. Ele é capaz de gerar uma enorme quantidade de energia através das usinas nucleares. Você sabe como isso funciona?

O sol é a maior fonte de energia em nosso planeta, e sua força vem dos átomos. A ciência nos deu a chave para controlar toda essa energia e sua matéria prima é o urânio, matéria em abundância em nosso país. Alguns átomos de urânio são capazes de liberar tanta energia, que  uma pequena pastilha pode gerar eletricidade suficiente para abastecer uma casa por um ano. 

O urânio é um elemento radioativo, ele é o átomo com o núcleo mais pesado que existe naturalmente na Terra. E é em usinas nucleares que ele é manipulado para produzir energia elétrica.

Uma usina nuclear é uma instalação industrial que produz energia elétrica a partir de reações nucleares. As reações nucleares de elementos radioativos, como o urânio, produzem uma grande quantidade de energia térmica. Essas grandes instalações são construídas envolvidas por uma contenção feita de ferro armado, concreto e aço, tudo isso para proteger o reator nuclear de emitir radiações para o meio ambiente.

No vídeo abaixo você poderá entender, de forma resumida, como funciona o processo de reação nuclear — da transformação de átomos em combustível para as usinas até a distribuição de energia.

https://www.youtube.com/watch?v=OzxiQdmTD58

Basicamente, uma usina nuclear é composta por três fases: a primária, a secundária e a refrigeração. Na primária, o urânio é colocado no vaso de pressão. Com a fissão (quebra do núcleo de um átomo instável em dois núcleos menores), há a produção de energia térmica. Nesta etapa, a água é utilizada para resfriar o núcleo do reator nuclear.

Na etapa secundária, a água que foi aquecida no sistema primário (agora radioativa) é transformada em vapor de água em um sistema chamado gerador de vapor. O vapor produzido no sistema secundário é utilizado para movimentar a turbina de um gerador elétrico, o que irá produzir a energia.

Em seguida, o vapor de água produzido no sistema secundário é transformado em água através de um sistema de condensação, ou seja, através de um condensador que é resfriado por um sistema de refrigeração de água. Esse sistema bombeia água do mar (fria), através de circuitos de resfriamento que ficam dentro do condensador, a água do mar vai resfriar o sistema para fazer com que a água que foi vaporizada volte para o sistema na forma líquida.

Por fim, a energia que é gerada através deste processo de fissão nuclear chega às residências por meio das redes de distribuição de energia elétrica. Veja abaixo a esquemática:

Esquemática de uma Usina Nuclear

 

Existem usinas nucleares no Brasil?

Sim! Elas estão localizadas na Central Nuclear em Angra dos Reis, no Rio de Janeiro. As usinas chamadas de Angra 1 e Angra 2, são responsáveis pela produção de 3% da energia consumida no país. Uma terceira usina está sendo construída, mas está longe da conclusão.

Por ser um país tropical e ter uma imensidade de rios formando grandes bacias hidrográficas, o Brasil tem diversas fontes de energia, como solar, eólica, hidrelétrica, das marés, do etanol, da biomassa, etc. O uso da energia nuclear vem da necessidade de diversificar a matriz energética brasileira – mesmo que o custo da energia nuclear não seja barato. Leia mais sobre a matriz energética brasileira clicando aqui. =)