Tag: como funciona

Como funciona o raio-x? Descubra sua história e suas características

Os raios-x foram descobertos em novembro de 1895.

Os raios-x são um tipo de radiação de alta energia produzida a partir da colisão de feixes de elétrons com metais. Essa radiação pode não ser percebida a olho humano, pois está além da frequência máxima que o ser humano pode distinguir. Além disso, possui capacidade de penetrar em organismos vivos e atravessar tecidos de menor densidade.

É muito importante na medicina, pois o raio-x é absorvido pelas partes mais densas do corpo, como ossos e dentes. Também é usado industrialmente, para observar a estrutura interna de objetos, procurando ver se há falhas em sua estrutura.

A descoberta

Os raios-x foram descobertos em novembro de 1895 quando o físico alemão Wilhelm Conrad Röentgen (1845-1923) realizava experimentos em seu laboratório. Trabalhando com tubos de raios catódicos (descobertos por Crookes), Röentgen observou uma inesperada luminosidade e, ao interrompê-la com a mão, viu a imagem de seus ossos exposta em uma tela.

Ao investigar mais a fundo, para entender a origem dessa luminosidade, Roentgen colocou vários objetos entre a ampola e a tela e observou que todos pareciam ficar transparentes. O físico observou que a radiação era capaz de enegrecer filmes fotográficos. Visto que considerava esses raios ainda muito enigmáticos, ele os denominou raios-x.

Em dezembro de 1895, ele pediu que sua esposa, Anna Bertha Röentgen, colocasse a mão entre um filme fotográfico e o tubo no qual os raios eram produzidos. Depois de cerca de 15 minutos, ele percebeu que a imagem dos ossos e as partes moles da mão da mulher estavam impressas no filme fotográfico. Essa foi a primeira radiografia feita no mundo. Em 1901, Wilhelm Conrad Röentgen ganhou o prêmio Nobel de Física por sua descoberta.

Röentgen e a primeira radiografia realizada no mundo
Röentgen e a primeira radiografia, reproduzida em 1985.

Características dos raios-x

O raio-x é produzido em um tubo de raios catódicos. O cátodo, após ser aquecido pela passagem de corrente elétrica, libera elétrons com alta velocidade. Esses elétrons são fortemente atraídos pelo ânodo; nessa atração, eles se colidem. Logo, quando os elétrons dos átomos pertencentes ao ânodo recebem a energia oriunda dos elétrons em movimento, o resultado é a produção de radiações eletromagnéticas que são denominadas raios-x.

Assim como toda radiação eletromagnética, os raios-x não precisam de meio de propagação e movem-se na velocidade da luz (3,0 x 108 m/s). Essa radiação é ionizante, isso quer dizer que ela pode gerar danos ao corpo humano em caso de exposições prolongadas; quanto mais distante da fonte, menor será a intensidade dos raios.

Por isso, pessoas que trabalham com radiografias usam aventais de chumbo (que não permitem que essas radiações atravessem) e se mantêm longe no momento do disparo. 

O equipamento de raio-x na medicina

O grande benefício oriundo da descoberta dos raios-x foi a possibilidade de realizar diagnósticos por imagens. O equipamento de raio-x serve para tirar radiografias, que são como fotografias da parte interna do corpo.

Por meio das imagens geradas, é possível observar estruturas anatômicas, como ossos, órgãos e vasos sanguíneos, sem precisar de cirurgia e facilitando diagnósticos em diversas partes do organismo. É um exame barato, não invasivo e indolor.

O estudo de órgãos do abdômen, a radiografia do tórax para análise de doenças do pulmão e a mamografia, exame que busca identificar câncer de mama, são exemplos de aplicações dos raios-x. Inclusive, o exame é muito importante neste momento em que estamos passando pela pandemia do COVID-19, ajudando no diagnóstico da doença através de imagens do pulmão.

Impressionante como algumas descobertas que acontecem, aparentemente por acaso, podem facilitar e melhorar nossa vida, não é mesmo? Uma dessas descobertas é a bússola, quer saber como ela foi inventada? Clique aqui e descubra! =)

Como funciona o helicóptero?

Descubra como funciona a aeronave mais versátil e amplamente utilizada no mundo.

Podemos dizer que o helicóptero é um avião com asas móveis: as hélices (que também chamamos de rotor). E, diferentemente do avião, que só se desloca para a frente, ele pode pairar no ar, fazer manobras suaves para qualquer direção e até andar de ré, porque suas pás estão sempre em movimento. Para que esse tipo de manobra saia bem, não é nada simples, já que a tendência natural do impulso provocado pela rotação das hélices (o chamado torque) seria fazer a nave sair rodopiando como um pião. É por isso que existe uma segunda hélice que gira em pé e produz uma força lateral: para contrabalancear o rotor da cauda e deixar seu “corpo” parado enquanto as hélices giram.

Como funcionam as hélices do helicóptero?

  1. As lâminas têm a forma de perfis aéreos (asas de avião com perfil curvo), de modo que geram elevação ao girar.
  2. Cada lâmina pode girar sobre uma dobradiça emplumada.
  3. Os links verticais  empurram as lâminas para cima e para baixo, tornando-os giratórios. Os links de passo movem-se para cima e para baixo, de acordo com o ângulo das placas swash.
  4. O mastro do rotor (um eixo central conectado ao motor pela transmissão) faz girar todo o conjunto da lâmina.
  5. A tampa do cubo do rotor (acima dos rotores) ajuda a reduzir o arrasto aerodinâmico.
  6. Existem dois motores turbo-eixo, um em cada lado dos rotores. Se um motor falhar, ainda deve haver energia suficiente do outro motor para aterrar o helicóptero com segurança.

Por que o helicóptero não sai rodopiando?

“Para toda ação, sempre há uma reação oposta de mesma intensidade.” A Terceira Lei de Newton pode ser aplicada de forma simples no funcionamento de um helicóptero. 

Seguindo a lei, quando a hélice principal começa a girar (ação), a fuselagem tende a girar em igual intensidade no sentido oposto (reação). Essa força é conhecida como torque.

Para combater essa reação, Igor Sikorsky, o criador do helicóptero, teve a genialidade de instalar uma hélice na cauda da nave, que também fornece controle direcional. O funcionamento da hélice da cauda é semelhante ao da principal, exceto que elas podem ser inclinadas. O movimento da hélice na cauda evita que o torque comprometa o voo da aeronave, fazendo com que o piloto tenha condições necessárias para fazer movimentos de emergência.

A aeronave mais versátil e amplamente utilizada no mundo

Ao longo dos anos, as inovações em design de helicópteros tornaram as máquinas mais seguras, mais confiáveis ​​e fáceis de controlar. Por possuírem atributos diferentes do avião, por exemplo, eles podem ser utilizados em áreas congestionadas ou isoladas em que as aeronaves de asa fixa não seriam capazes de pousar ou decolar. A capacidade de pairar por longos períodos de tempo e de decolagem e aterragem vertical permite aos helicópteros realizar tarefas que outras aeronaves não são capazes.

Por isso, hoje, os helicópteros são utilizados para fins militares e civis, como transporte de tropas, apoio de infantaria, combate a incêndios, resgates, operações entre navios e equipes entre plataformas petrolíferas, transporte de empresários, evacuações sanitárias, guindaste aéreo, polícia e vigilância de civis, transporte de bens etc.

Fonte: Canal Piloto

Como funciona um pisca-pisca, o que faz ele piscar?

Existem dois tipos principais: os pisca-piscas com ligação em série e os com ligação em paralelo. Vamos conhecer?

O pisca-pisca é um item que se tornou indispensável na decoração de Natal, suas luzes e efeitos colorem e iluminam as cidades durante todo o final de ano. Com a produção em larga escala e o desenvolvimento da tecnologia, elas se tornaram populares e mais baratas, resultando em uma invasão de pisca-piscas. Mas o que vamos falar hoje é sobre o seu funcionamento: como todas as luzes acendem? Como elas piscam? O segredo é relativamente simples e existem dois tipos principais: os pisca-piscas com ligação em série e os com ligação em paralelo. Vamos conhecer?

 

Pisca-pisca com funcionamento sem série

Neste tipo de pisca-pisca as lâmpadas são ligadas a fonte de energia uma após a outra, dessa forma a corrente elétrica sai de um dos pólos, vai passando por todas as lâmpadas e entra no outro pólo, tendo um único caminho a seguir. Nesse caso a corrente passa com a mesma intensidade por todas as lâmpadas, uma vez que há um fluxo contínuo de elétrons através de todos os elementos do circuito, fazendo com que o brilho tenha a mesma força e todas as luzinhas funcionem juntas — estando todas acesas ou todas apagadas. O segredo para fazer as lâmpadas piscarem é um sistema interruptor que abre e fecha o circuito, ele permite e também interrompe a passagem da corrente.

E se uma das lâmpadas queima? Bem, nesse tipo de circuito todas as outras lâmpadas também se apagam, uma vez que todo o circuito é interrompido. Aliás, quando isso acontece, se não for possível identificar a lâmpada queimada visualmente, é necessário testar uma a uma, trocando a lâmpada atual por outra seguramente em funcionamento, até descobrir qual “pifou”.

luzes

Nos pisca-piscas com funcionamento em série, se uma lâmpadas queima, todas as outras também se apagam

 

Pisca-pisca com funcionamento em paralelo

Esse tipo de pisca-pisca apresenta uma vantagem imediata, nele, as lâmpadas estão ligadas separadamente a fonte. Dessa maneira, se uma das luzes queima, as outras continuam ligadas, submetidas à mesma tensão, e portanto funcionando. Um simples interruptor controla o piscar do circuito como um todo, mas é possível chavear cada uma das lâmpadas, que pode ligar ou desligar independente das outras.

Para esse controle separado das lâmpadas é necessário um circuito eletrônico, geralmente baseado em um chip capaz de controlar a passagem da corrente por diversos canais, fazendo a alternância entre o sistema ligado e desligado. O chip controla qual canal terá energia elétrica e, portanto, qual cor de lâmpada será acesa num dado momento. Por exemplo, imaginemos um chip que controla 3 canais de energia e que cada um é ligado a uma cor de lâmpadas, azul, vermelha e amarela, o chip libera a passagem de energia em cada canal em separado de forma que as 3 cores acendem de maneira independente umas das outras. O controle vai além da simples alternância de cores, o tempo que cada uma fica acesa, a frequência, sequência e forma de pisque também podem ser alterados. Além disso, um chip com mais canais pode ser utilizado para controlar cada uma das lâmpadas separadamente.

pisca-pisca-colorido

Nos pisca-piscas com funcionamento em paralelo, se uma lâmpadas queima, as outras continuam funcionando

 

Você já tinha parado para pensar  no funcionamento das belíssimas luzes natalinas? Agora que você já conhece os dois principais tipos de pisca-piscas e como eles funcionam, que tal ler este artigo sobre como economizar energia e evitar acidentes com as luzes de Natal? Aproveite! Boas festas!

Transformador

Como funcionam os transformadores?

As instalações elétricas muitas vezes necessitam que a tensão fornecida pelas companhias de energia elétrica aumente ou diminua, para isso,…

As instalações elétricas muitas vezes necessitam que a tensão fornecida pelas companhias de energia elétrica aumente ou diminua, para isso, é preciso um dispositivo que permita fazer essa transformação de tensão. Imagine, por exemplo, que você comprou uma geladeira com uma tensão de 110 V, porém, em sua casa, a tensão é 220 V. Nesse caso, a forma mais fácil de não danificar a sua geladeira, é utilizar um transformador.

Responsável por garantir o uso de energia elétrica em residências e indústrias, o transformador de tensão é um dispositivo de corrente alternada, operando sob os princípios eletromagnéticos da Lei de Faraday e da Lei de Lenz. Existem dois modelos diferentes de transformadores: o transformador de potência, que recebe a energia elétrica da usina e repassa para a rede de transmissão, e o transformador de distribuição, que é a última etapa antes da energia elétrica chegar até o consumidor.

transformador-eletrico-weg

Com vocês: o transformador elétrico
O transformador é constituído por uma peça de ferro, chamada de núcleo e espiras condutoras em duas regiões distintas, gerando duas bobinas, elas são isoladas eletricamente entre si, denominadas primária e secundária. Na bobina primária é aplicada a tensão que se deseja transformar, já na bobina secundária é onde sai a tensão já transformada. Veja a ilustração:

transformador-e-nucleo2

Esquema de um transformador
A transformação ocorre quando é aplicada uma tensão alternada no enrolamento primário fazendo surgir uma corrente, também alternada, que percorrerá todo o enrolamento. Através dessa corrente estabelece-se um campo magnético no núcleo de ferro, esse por sua vez sofre várias flutuações e, como consequência da variação de campo magnético sobre suas espiras surge, na segunda bobina, uma tensão induzida.
 
***

Quer saber ainda mais sobre os transformadores, e mais, vê-los de pertinho? Aqui no Museu WEG há uma sala com geradores, transformadores e motores elétricos! A entrada é gratuita, e se preferir, o tour virtual está disponível neste link: https://museuweg.net/tour-virtual/.