Categoria: Magnetismo

pai-do-eletroima

William Sturgeon: o pai do eletroímã

Hoje, em 22 de maio de 1783, nascia no Reino Unido o físico Willian Sturgeon. Ele foi o responsável por…

Hoje, em 22 de maio de 1783, nascia no Reino Unido o físico Willian Sturgeon. Ele foi o responsável por uma das invenções que alterou o curso da história: o eletroímã. A partir dele, outros dispositivos centrais da tecnologia moderna puderam surgir, como o telégrafo e o motor elétrico.

A vida antes e depois da física

Willian Sturgeon nasceu em Whittington, em Lancashire, um dos condados da Inglaterra, onde foi aprendiz de sapateiro. Ele se juntou ao exército em 1802 e se dedicou ao ensino de matemática e física.

Autodidata em fenômenos elétricos e ciências naturais, passou muito tempo lecionando e conduzindo experimentos elétricos. Em 1824, tornou-se professor de Ciências e Filosofia no Royal Military College, em Addiscombe, Surrey. Foi no ano seguinte que Sturgeon apresentou seu primeiro eletroímã.

Como se deu a invenção?

Sturgeon curvou uma barra de ferro comum, criando o formato de uma ferradura. Depois, a revestiu com verniz e enrolou com fio de cobre desencapado. Quando provocou a passagem de corrente gerada por uma pilha voltaica pelo fio, a ferradura se tornou um imã capaz de sustentar o peso de quase 4 quilos, o que representava muito para a época. Surgia, assim, o eletroímã.

pai-do-eletroima-2

Outros inventos e estudos

Em 1832 o físico também inventou o comutador, parte integrante dos motores elétricos mais modernos. Em 1836, ano em que fundou a revista mensal Annals of Electricity, Willian Sturgeon inventou o primeiro galvanômetro de bobina suspenso, um dispositivo para medir a corrente.

Ele também melhorou a bateria voltaica e trabalhou na teoria da termoeletricidade. De mais de 500 observações de pipa, estabeleceu que, em climas serenos, a atmosfera é invariavelmente carregada positivamente em relação à Terra, tornando-se mais positiva com o aumento da altitude.

Aplicações práticas

O eletroímã é, basicamente, um imã obtido por meio de corrente elétrica, portanto um imã não natural. É o que faz, por exemplo, o motor elétrico funcionar, já que sua base é composta pela repulsão entre dois ímãs, um natural e o eletroímã.

O eletroímã também é usado em campainhas, telefones, aparelhos de telégrafo, relés, alto-falantes, relógios elétricos, ventiladores, geladeiras, lavadoras, batedeiras, geradores, chaves automáticas, disjuntores. Guindastes com eletroímãs são usados para carregar e descarregar ferro, e para separar o ferro e o aço de outros materiais. O eletroímã é parte importante de uma infinidade de outros aparelhos, dispositivos e máquinas.

Conheça agora outras pesquisas e inventos que, juntos, ajudaram a dar origem ao motor elétrico.

quinto-estado-da-matéria-1

Físico catarinense participa da pesquisa da descoberta do quinto estado da matéria

O físico catarinense Germano Woehl Jr. participou de uma descoberta fundamental para a comunidade científica e para o mundo: a…

O físico catarinense Germano Woehl Jr. participou de uma descoberta fundamental para a comunidade científica e para o mundo: a de que há um quinto estado da matéria, além do sólido, líquido, gasoso e plasma. O Museu WEG não poderia deixar registrar o feito, que ganha uma conotação ainda mais especial, já que Woehl, nascido em Itaiópolis, é também morador de Jaraguá do Sul, nossa cidade-sede.

Divulgada recentemente, a descoberta foi publicada em primeira mão pela Revista Científica da Sociedade Americana de Física, que você pode conferir aqui. O novo estado físico da matéria é chamado de Polarons de Rydberg. Ele é criado em temperaturas extremamente baixas, quando um elétron orbita seu núcleo a uma distância tão grande que outros átomos cabem dessa órbita. A fraca ligação entre essas partículas forma os Polarons de Rydberg.

Ao criar átomos dentro de átomos, a nova pesquisa marca uma época empolgante para a física quântica. Na prática, a descoberta do quinto estado da matéria representará uma evolução tecnológica sem precedentes, por exemplo, com a criação de computadores quânticos. São equipamentos com uma capacidade de processamento tamanha que conseguem quebrar todas as senhas de computadores do mundo.

quinto-estado-da-matéria-1

Registro do experimento na Rice University, onde foi observado o novo estado da matéria

Germano nos concedeu o privilégio de uma entrevista exclusiva, que você confere a seguir:

Em que contexto se deu a descoberta e como aconteceu sua participação?

Foi durante meu estágio de pós-doutorado nos Estados Unidos, na Rice University, Houston, Texas. Eu ganhei uma bolsa do CNPq, do Programa de Pós-Doutorado no Exterior, para realizar este estágio nos laboratórios do professor Thomas Killian, que foi orientado por dois ganhadores do Prêmio Nobel da área, um deles no doutorado no MIT (Massachusetts Institute of Technology – Instituto de Tecnologia de Massachusetts) e outro no pós-doutorado na Universidade do Colorado.

É difícil conseguir aceitação para fazer pós-doutorado em um grupo de pesquisa forte como este do prof. Killian. O que me favoreceu foi o fato de eu ter feito meu doutorado nesta área na UNICAMP e ter feito o mestrado na USP, Instituto de Física de São Carlos (IFSC), no grupo que tem um professor famoso nesta área, reconhecido internacionalmente. Então o prof. Killian telefonou para estes professores, da UNICAMP e da USP e eles deram boas referências sobre mim.
Na realização do meu estágio, o prof. Killian soube me encaixar muito bem na equipe. Ele percebeu que minha habilidade com a tecnologia de lasers e óptica era boa.

Então pediu para que eu desenvolvesse soluções para desacelerar e aprisionar os átomos com feixe de lasers para produzir o material quântico com um número maior de átomos e uma geometria especial com uma variação dinâmica de forma e intensidade do feixe de laser.

Tudo tinha que ser controlado por computador e este controle não poderia exigir muita memória, porque todo o experimento é automatizado e já estava no limite da capacidade do computador. Ele apontou os caminhos e desenvolvi com sucesso o sistema.

É importante destacar que estes conhecimentos sobre lasers e óptica foram adquiridos integralmente nas universidades brasileiras, na USP e na UNICAMP. Minha formação de pesquisador na área de física, com especialidade em tecnologia de lasers, é 100% brasileira.

Estavam trabalhando há quanto tempo na pesquisa?

Meu pós-doutorado na Rice University foi de quase dois anos. O prof. Killian tem três experimentos completos para desacelerar átomos e obter o material quântico, cujas propriedades estão sendo pesquisadas. Eles pesquisam na fronteira do conhecimento humano e procuram desvendar mais segredos do comportamento dos átomos.

quinto-estado-da-matéria-1

Germano Woehl Jr no laboratório de pesquisa do Instituto de Estudos Avançados, Departamento de Ciência e Tecnologia Aeroespacial da FAB, em São José dos Campos (SP)

Na sua opinião, qual impacto desta descoberta para a ciência e para o mundo?

O impacto de novas descoberta da ciência demoram um pouco para chegar em nossas casas. Einstein já era muito famoso quando publicou em 1919 seus estudos teóricos sobre as duas formas do átomo perder energia: uma delas é o elétron decair espontaneamente para um nível de menor energia emitindo um fóton (luz) e outra forma é um fóton estimular o decaimento deste elétron e o átomo emitir outro fóton com características idênticas (processo chamado de emissão estimulada).

Então, os jornalistas queriam explicar para a população a importância desta descoberta (teórica) de Einstein e perguntavam para os físicos qual a aplicação disso no dia a dia das pessoas. Até os anos 60, quando o Laser foi inventado (cujo princípio é a emissão estimulada dos átomos), durante 40 anos, os físicos respondiam aos jornalistas: nenhuma. Analisem o impacto das aplicações dos Lasers, dos LEDs, que funcionam conforme a teoria prevista por Einstein em 1919.

Foi justamente o laser que possibilitou parar os átomos e levá-los a temperaturas próximas do zero absoluto (-273,15 °C ou zero Kelvin). Nesta temperatura, a distribuição dos átomos colapsa abruptamente, ou seja, os átomos se condensam e passam a ocupar menos espaço.

Nestas condições, a matéria exibe um comportamento regido pelas leis da mecânica quântica e obtemos então o chamado “material quântico”, um tipo de material com propriedades mágicas, que o homem nunca sonhou em colocar as mãos.

Foi Einstein que previu esta condensação abrupta em temperaturas próximas do zero absoluto, denominada de condensação de Bose-Einstein.

Este fenômeno da condensação de Bose-Einstein só foi possível observar em laboratório em 1997, nos Estados Unidos. Os físicos que conseguiram isso, da Universidade do Colorado e do MIT, ganharam o Prêmio Nobel três anos mais tarde, em 2000. Até agora, somente 45 laboratórios do mundo conseguiram observar o fenômeno. O IFSC da USP de São Carlos conseguiu em 2004.

quinto-estado-da-matéria-1

Detalhe da câmara de ultra-alto vácuo, onde os átomos são desacelerados com feixe de laser até ficarem na temperatura próxima de -273,15 °C

Nos laboratórios do prof. Killian, na Rice University, eles estão um passo à frente, já dominam bem a técnica de obter o material quântico e estão pesquisando suas propriedades.

Como é um assunto na fronteira do conhecimento, estas pesquisas experimentais precisam de suporte dos físicos teóricos. Porque não tem teoria ainda. Por isso, nesta descoberta do novo estado da matéria, foi muito importante o trabalho teórico dos físicos da Universidade de Harvard e da Universidade de Tecnologia de Viena, Áustria, onde foi utilizado um supercomputador nos cálculos numéricos para direcionar o experimento.

Conforme as notas à imprensa das Universidades de Harvard e Rice, essa descoberta pode abrir caminho para entender melhor as ligações químicas e a inovação de novos materiais, com os supercondutores a temperatura ambiente, que conduzem eletricidade sem perdas.

Obter estes materiais é o grande sonho da humanidade. Os melhores condutores de eletricidade, metais de cobre e alumínio, perdem por calor parte da energia conduzida. Estas perdas são consideráveis. Por exemplo, cerca de 30% da energia gerada por Itaipu é perdida na transmissão para os centros consumidores no Sudeste. Com materiais supercondutores não teria esta perda.

magnetismo

O magnetismo e sua relação com o motor

Certamente você já ouviu – e também usou – aquela famosa expressão “pólos iguais se repelem e os diferentes se…

Certamente você já ouviu – e também usou – aquela famosa expressão “pólos iguais se repelem e os diferentes se atraem”. Na verdade, essa frase resume a essência das propriedades dos ímãs. Formados por duas extremidades, os pólos norte e sul, são chamados assim em referência ao campo magnético da Terra.

Sua importância é tal que o ímã tem uma área exclusiva para estudar os fenômenos, denominada magnetismo. Os primeiros estudos surgiram no século VI a.C., mas foi no século VI que ela passou a ser aplicada na prática, com os chineses. A bússola foi a primeira invenção baseada na interação do campo magnético de um ímã (a agulha) com o campo magnético terrestre.

magnetismo

Até o século XIX, magnetismo e eletricidade eram considerados fenômenos completamente distintos. Quando essa relação passou a ser feita provocou uma verdadeira revolução nas pesquisas. Surgia a teoria do eletromagnetismo, segundo a qual cargas elétricas em movimento geram campo magnético e este em movimento gera corrente elétrica.

A partir daí, foi um boom de invenções que mudariam o curso da história, a começar pelos motores elétricos, que impulsionaram a era industrial no planeta. A produção de energia nas usinas hidrelétricas, raios-X, cartões magnéticos, ondas de rádio e televisão, aparelhos de telecomunicação. As ondas eletromagnéticas estão presentes onde quer que seja e fazem o mundo funcionar.
Venha conhecer mais sobre essa área da ciência aqui no Museu!

O que seria do homem sem a ciência e a tecnologia?

Essa é uma pergunta difícil de responder, tamanhos os avanços e descobertas ao longo da história da humanidade. Para provocar…

16 de outubro de 2017
...

Essa é uma pergunta difícil de responder, tamanhos os avanços e descobertas ao longo da história da humanidade. Para provocar esta reflexão é que hoje se comemora o Dia da Ciência e Tecnologia.

A data é uma forma de homenagear as grandes descobertas que revolucionaram a vida de todos, mas também de incentivar os cientistas a desenvolverem novas pesquisas. Afinal, a ciência deve evoluir sempre, acompanhando o tempo e as necessidades que vão surgindo.

A descoberta do fogo, a invenção da roda e a capacidade de contar o tempo através do calendário foram algumas invenções que revolucionaram a sociedade.

Eletricidade e interação
A descoberta da eletricidade, parte fundamental desse processo evolutivo, está também muito ligada à história da WEG. E é isso que o Museu WEG de Ciência e Tecnologia mostra e busca exemplificar com ações educativas: processos geradores de energia e a forma como a comunidade se apropria deles.

dia-da-ciencia

O melhor é que tudo isso acontece de forma interativa. São várias demonstrações e experimentos, que mostram na prática os conceitos da física e da eletricidade. Como, por exemplo, a bicicleta que gera energia. Ao pedalar em ritmo acelerado e frequência contínua, você produz uma corrente elétrica nos rolamentos que faz acender uma lâmpada e liga um rádio.

Demais, né? Tanto que essa ação agrada crianças e adultos! Com uma bicicleta em tamanho normal e outra menor todo mundo pode curtir essa experiência.

Ficou curioso? Faça um tour virtual e tenha um gostinho do que te espera no Museu WEG de Ciência e Tecnologia.

15ª Semana dos Museus | Exposição “O Motor Elétrico – uma linha do tempo e muitas histórias”

Conheça o Museu WEG de Ciência e Tecnologia de uma perspectiva bem diferente, com a exposição “O Motor Elétrico – uma linha do tempo e muitas histórias”. Ela faz parte da programação da 15ª Semana Nacional dos Museus e estará disponível para visitação de 16/05 a 21/05.

16 de maio de 2017
...

Você pode ter a oportunidade de conhecer o Museu WEG de Ciência e Tecnologia de uma perspectiva bem diferente, com a exposição “O Motor Elétrico – uma linha do tempo e muitas histórias”. Ela faz parte da programação da 15ª Semana Nacional dos Museus e estará disponível para visitação de 16/05 a 21/05. A entrada é gratuita.

Neste ano, o tema principal proposto pelo órgão organizador do evento, o Instituto Brasileiro de Museus é “Museus e histórias controversas: dizer o indizível em museus”. Todas as instituições participantes criam uma programação especial para debater o tema, com abordagens diferentes.

Pensando nisso, o Museu WEG irá contar, pela primeira vez, a história da sua origem, através dos motores, cartas, jornais e fotografias. Uma exposição repleta de curiosidades e arquivos inéditos, resgatados a partir de um intenso processo de pesquisa e recuperação de materiais, especialmente para a programação.

Grupos escolares
Escolas podem organizar visitas guiadas para conhecer o museu e a exposição. Basta agendar a visita pelo site.

Serviço – 15ª Semana dos Museus | Exposição “O Motor Elétrico – uma linha do tempo e muitas histórias”
Quando:
16/05 a 21/05
Horário: terça a domingo, das 10h às 18h
Quanto: Entrada Gratuita
Informações: (47) 3276 4550
https://museuweg.net

Você conhece gerador de Van de Graaff?

Um dos equipamentos que mais faz sucesso no Museu WEG, conhecido por dar pequenos choques é o gerador de Van de Graaff.

27 de abril de 2017
...

Um dos equipamentos que mais faz sucesso no Museu WEG de Ciência e Tecnologia é o gerador eletrostático. Aquele, conhecido por dar pequenos choques, lembra? Também chamado de Gerador Van de Graaff, é um importante aliado no aprendizado de física.

Assim como muitos inventos, este também leva o nome do seu criador. O físico e engenheiro mecânico Robert Jeminson Van de Graaff foi um entusiasta na área de física nuclear, com destaque para a criação do gerador eletrostático, em 1929.

Um dos princípios básicos de Van de Graaff, explica a capacidade da carga elétrica se transferir integralmente de um corpo para outro. É por isso que quando uma pessoa leva um choque, por exemplo, você nunca deve encostar nela. A orientação é usar um isolante para puxar o indivíduo, porque caso tenha contato direto, você também recebe a carga elétrica.

Como funciona

O gerador é um sistema composto por uma esfera metálica, uma correia, que passa por duas polias e é ligada a um motor de alta tensão.

Quando acionado o motor, a correia faz atrito com a polia, gerando uma carga elétrica, que é transferida para a superfície interna do metal e então, distribuída para toda a superfície da esfera metálica. Por isso, ao encostar o dedo ou um objeto de metal na esfera, é possível perceber as descargas elétricas. O modelo tem capacidade de gerar até 10 milhões de eletrón-volts.

O gerador foi um percursor para criação de equipamentos semelhantes e mais modernos, mas com muita importância para a ciência.

Gerador_museu

Conheça na prática

Em algumas áreas da Física é necessário obter altas voltagens, para acelerar partículas atômicas eletrizadas, como prótons, elétrons, íons. Ao atingir grandes velocidades, essas partículas são lançadas para núcleos atômicos e provocam reações nucleares.

Quer viver na prática a experiência do gerador de Van de Graaff? Visite o Museu WEG e viva cada experimento de um jeito divertido e educativo. Saiba mais aqui.

Novas ações educativas no museu

Para continuar estimulando o conhecimento em torno de ciência e tecnologia, o Museu WEG ampliou o seu programa educacional com duas novas ações educativas.

Para continuar estimulando o conhecimento em torno de ciência e tecnologia, o Museu WEG ampliou o seu programa educacional com duas novas ações educativas, “Também sou cientista” e “Gerando e transformando energia”, direcionadas para alunos do 6º ao 9º do Ensino Fundamental e Médio. Ao todo, são sete opções de ações educativas para professores e alunos participarem.

Cada ação educativa é composta por uma temática, com conteúdo e ações específicas sobre o tema. Com uma dinâmica divertida, os alunos aprendem conceitos técnicos e práticos sobre ciência, integrando o assunto abordado na sala de aula.

Novidades

O programa “Também sou cientista” permite que os estudantes conheçam as histórias e descobertas dos cientistas, reconstruam suas experiências e aprendam a identificar onde essas técnicas são aplicadas no dia a dia.

Com a ação “Gerando e transformando energia” os estudantes podem aprender sobre os geradores e o sistema de funcionamento e claro, as diversas maneiras que promovem a transformação e a geração de energia.

Nas duas ações educativas são aplicadas as técnicas de cognição, metacognição, cooperação, sócio-afetiva e aprendizagem para a vida. As atividades possuem duas horas de duração.

Com o programa educacional, as ações se transformam em ferramentas de comunicação próxima entre escola e Museu WEG, transformando o espaço em um sistema de educação continuada para alunos e professores.

Como participar

Todas as ações educativas são gratuitas e incluem material de atividade e monitoria da equipe do museu. Para participar, o professor deve escolher a ação educativa e agendar um horário aqui. www.museuweg.net/contato/agendamento

Ainda não conhece o Museu WEG? Faça um tour virtual e prepare uma atividade educacional com seus alunos aqui.

Férias no Museu WEG de Ciência e Tecnologia

Você sabia, que se passarmos um balão muitas vezes nos cabelos este balão fica eletrizado!?
Aprenda isso e muito mais no programa de férias do museu.

Com o balão eletrizado você pode mover pequenos objetos de um lado para outro e até mesmo arrepiar os seus cabelos!

Como isso acontece?

Vocês já ouviram falar do princípio de que os opostos se atraem?

Se você esfregar um balão nos cabelos bem limpos e secos, causando bastante atrito, você poderá usá-la para atrair uma latinha de refrigerante vazia sem tocá-la.

O balão arranca algumas cargas negativas do cabelo, que são minúsculas partículas que não conseguimos ver, conhecidas como elétrons (-). Quando a gente aproxima o balão da latinha, esta latinha também estará cheia de cargas elétricas, acabamos atraindo as cargas positivas e com isso conseguimos puxar a latinha sem tocá-la.

Fonte: http://migre.me/ukwny

Fonte: http://migre.me/ukwny

Ficou interessado em saber como isso é possível e fazer você mesmo está experiência?

O museu está preparando especialmente para você uma série de atividades entre jogos e brincadeiras onde você poderá aprender muitas coisas novas, mas sem deixar de se divertir, pois, diversão não pode faltar nas férias, não é mesmo!?

As atividades acontecerão nos dias abaixo (vagas limitadas):

Crianças de 4 a 6 anos:

20/07 – quarta-feira

27/07 – quarta-feira

Crianças de 7 a 12 anos:

19/07 – Terça-feira

21/7 – Quinta-feira

26/07 – Terça-feia

28/07 – Quinta-feira

 Você pode escolher o horário: das 10h às 12h ou das 15h às 17h.

Peça para um adulto ligar ou enviar um e-mail para fazer sua inscrição. A participação é totalmente gratuita. Você não pode perder!

E-mail: museu@weg.net

Telefone: 3276-4550

Local: Museu WEG de Ciência e Tecnologia – Av. Getúlio Vargas, 667 – Centro.

Curta e fique por dentro das novidades: facebook.com/museuweg

Por que às vezes sentimos um choque ao encostar na maçaneta do carro?

Eletrização por atrito, é o fenômeno que causam pequenos choques em nosso corpo.

27 de agosto de 2015
...

Somos feitos de átomos, assim como tudo ao nosso redor. E átomos possuem cargas elétricas (prótons positivos e elétrons negativos). Geralmente, em um átomo, o número de prótons é igual ao número de elétrons. Dessa forma, a carga elétrica total num corpo tende a ser nula (nêutron). Mas é possível alterar essa situação de neutralidade elétrica em processos chamados de eletrização por atrito.

E é este tipo de eletrização que acontece ao sentirmos o choque ao encostar em um carro!

É mais comum acontecer em dias mais secos: o carro, quando está em movimento, fica eletrizado por atrito com o ar, que funciona como um bom isolante elétrico. Ao parar, a carga que se forma na lataria do carro permanece nela, pois os pneus isolam a carroceria do automóvel do chão.

Nessas condições, alguém que toque na maçaneta do carro ou em qualquer outro ponto dele, funciona como um fio terra para aquela carga armazenada. Uma corrente elétrica passa por seu corpo, ocasionando o choque elétrico.

Mas fique tranquilo, a corrente nesse tipo de choque é pequena e tem pouca duração, por isso você não terá nada mais do que um pequeno susto.

Hans Christian Oersted

Já que hoje é aniversário de Hans Christian Oersted, vamos falar de sua importante descoberta, que é fundamental para nosso dia-a-dia: os eletroímãs.

14 de agosto de 2015
...

Você já dever ter manuseado pelo menos uma vez com um imã, provavelmente de geladeira ou algum objeto magnético e deve ter percebido que eles são permanentes, ou seja, sempre ficam magnetizados.

Mas será que é possível construir um imã não permanente, que possa ser ligado e desligado quando quiser? E será que existe alguma utilidade para isso?

A resposta para estas duas perguntas é SIM. Esses objetos chamam-se eletroímãs e, como sugere seu nome, são obtidos a partir de eletricidade e integram inúmeros dispositivos do nosso cotidiano.

O físico dinamarquês Hans Christian Oersted publicou, em 1831, um ensaio onde previu a existência de alguma relação entre corrente elétrica e magnetismo, mas ainda não tinha conseguido prová-la experimentalmente. Conta-se que ele imaginou um experimento pouco antes de dar uma aula na universidade da qual era professor, quando chegou em sua classe, decidiu testar a experiência em frente aos alunos. Para sua surpresa, ela funcionou! Assim, pela primeira vez foi verificada, experimentalmente, a relação entre eletricidade e magnetismo. O que nada mais, nada menos é “uma corrente elétrica gera um campo magnético”.

A EXPERIÊNCIA DE OERSTED

O experimento que ele apresentou aos alunos se resume a um circuito elétrico simples com alta corrente elétrica. O físico posicionou uma bússola próxima ao fio condutor e, quando ligou o circuito, a agulha da bússola que geralmente está orientada com o campo magnético terrestre (ao Norte), sofreu uma desorientação instantânea, voltando à posição original quando o circuito foi desligado. Neste momento, percebeu que a corrente elétrica que passa no fio pode gerar um campo magnético ao seu redor, tornado-o capaz de mover materiais magnéticos, tais como a agulha da bússola.

Mais tarde, observou também que, ao colocar materiais ferromagnéticos neste campo, pode-se obter imãs variáveis chamados de eletroímãs, semelhantes ao ímã comum, exceto pelo fato de ser “temporário”, ou seja, o campo magnético só existe quando a corrente elétrica está passando. O fenômeno ficou conhecido como indução magnética.

oersted 3

Figura 1: indução magnética em um fio

A Figura 1 mostra o efeito observado por Orested. A passagem de corrente elétrica por um fio induz um campo magnético B ao seu redor. Usando sua mão direita é possível identificar a direção do campo B, basta colocar o polegar na direção da corrente elétrica e os outros dedos indicarão a direção do campo.

Usando um enrolamento de fios condutores, como num solenoide, é possível verificar um campo induzido mais intenso do que em apenas um fio e, se no núcleo desse solenoide for colocado um material ferromagnético, podemos construir um imã ainda mais intenso, como ilustra a figura 2. Assim são construídos os Eletroímãs modernos.

Oersted 1

Figura 2 – Solenoide com um núcleo ferromagnético.

 

E ONDE SÃO USADOS ESSES ELETROÍMÃS?

São inúmeras as aplicações. Você pode não ter notado, mas com certeza já utilizou algum dispositivo que funciona a partir do principio de indução magnética. São eles que fazem soar a campainha da porta das residências; possibilitam a transmissão de mensagens telegráficas; estão presentes nos leitores e gravadores de discos rígidos e alto-falantes. Também nos motores elétricos que precisam desses dispositivos para a conversão de energia elétrica em energia mecânica.

Ficou com vontade de conhecer o experimento na prática? Aqui no Museu WEG reproduzimos o feito de Orested, onde você poderá observar as bussolas se movimentando.

 

Horário de Atendimento do Museu: 10h às 18h (sem fechar para o almoço)

Dias: Terça à Domingo

Entrada: Gratuita

 

REFERÊNCIAS BIBLIOGRÁFICAS:

RESNICK, HALLIDAY, (1996): Física, vol.3, LTC-RJ

ALVARENGA, BEATRIZ E MÁXIMO, ANTÔNIO. Curso de Física, Volume 3, São Paulo, Spicione, 1997.

http://parquedaciencia.blogspot.com.br/2014/03/a-descoberta-de-hans-christian-oersted.html por Ana Caroline Pscheidt