Categoria: Magnetismo

Buraco negro: Parece que Einstein acertou mais uma vez

A primeira imagem de um buraco negro representa um marco histórico para a astrofísica, mas também serve para confirmar e validar a teoria geral da relatividade do renomado físico Albert Einstein.

Estima-se que os buracos negros sejam fenômenos cósmicos que se originam quando uma estrela entra em colapso. O restante de sua matéria fica limitado a uma pequena região, que logo dá lugar a um imenso campo gravitacional, levantando algumas das questões mais complexas sobre a natureza do espaço e do tempo e, agora, até mesmo sobre nossa existência.

A primeira imagem de um buraco negro representa um marco histórico para a astrofísica, mas também serve para confirmar e validar a teoria geral da relatividade do renomado físico Albert Einstein, agora os buracos negros são reais, não mais uma simulação de cálculos teóricos.

Na imagem, registrada de 05 a 11 de abril de 2018, o buraco negro parece um anel laranja em torno de uma silhueta redonda escura, na qual os astrônomos reconheceram o buraco negro na galáxia batizada de M87, e, para ter ideia da sua dimensão, ele é maior que o tamanho de nosso Sistema Solar inteiro. Ele não se localiza exatamente no centro da galáxia, mas a 22 anos-luz na lateral — o que facilitou o reconhecimento, o buraco negro tem 40 bilhões de quilômetros de diâmetro – cerca de 3 milhões de vezes o tamanho de nosso planeta – e é descrito pelos cientistas como um “monstro”.

 

passioneastronomia_56584409_879642212382166_5987380464980334360_n

Simulação / expectativa /  imagem real (@thelionlaw)

 

Nenhum telescópio, sozinho, seria poderoso o suficiente para visualizar o buraco negro.

Assim, o professor Sheperd Doeleman, do Centro de Astrofísica Harvard-Smithsonian, liderou um projeto para montar uma rede de oito telescópios interligados. Juntos, eles formam o Telescópio Event Horizon e podem ser considerados como uma variedade de pratos do tamanho de um planeta.

Cada um está localizado no alto de uma variedade de locais exóticos, incluindo vulcões no Havaí e no México, montanhas no Arizona e na Sierra Nevada espanhola, no deserto do Atacama no Chile e na Antártida. Uma equipe de 200 cientistas apontou os telescópios em rede em direção à M87 e examinou seu coração durante um período de 10 dias.

A primeira imagem de um buraco negro coincide com os simulações baseadas nas equações de Einstein, que previam um anel brilhante no entorno de uma forma escura. Nessa simulação, a luz seria produzida por partículas de gás e poeira aceleradas em alta velocidade e destruídas pouco antes de desaparecer no buraco. A área escura seria a sombra que o buraco lança nesse turbilhão.

Esta imagem permitirá novos estudos, ninguém ainda sabe como o anel luminoso é realmente criado, e muito menos o que acontece quando um objeto entra no buraco negro. Cientistas acreditam que existam explicações mais complexas para a gravidade ainda não descobertas, nem mesmo por Einstein, e é no buraco negro que, provavelmente, essas limitações devem ser expostas.

Outra curiosidade é que a luz é mais brilhante do que todas as bilhões de outras estrelas da galáxia combinadas – e é por isso que ela pode ser vista da Terra. A borda do círculo visto na imagem é o ponto no qual o gás entra no buraco negro, do qual nem mesmo a luz pode escapar. É o ponto em que todas as leis da física são quebradas.


Fontes:

BBC | El Pais

Aceleradores de partículas são laboratórios gigantes. Por fora, parecem grandes túneis, que podem ser retos ou em forma de anel e ter vários quilômetros de extensão. Dentro deles, as partículas que compõem os átomos – como prótons e elétrons – são aceleradas a velocidades próximas à da luz para que elas possam bombardear núcleos atômicos estáveis. Se você quer saber um pouco mais, leia o artigo que escrevemos sobre os aceleradores de partículas e o que eles fazem. Mas depois volta pra cá, ok?

No ano de 2008, o mundo inteiro voltou a sua atenção para o maior acelerador de partículas do mundo, o LHC. O gigante de 27 km de circunferência e 8,6 km de diâmetro tenta usar a tecnologia para recriar um ambiente semelhante ao do início do Universo. Com ele, a ciência já detectou o bóson de Higs – a partícula sub-atômica que confere massa a quarks e elétrons (sem ele, não seriam formados os átomos, e o Universo seria só um monte de partículas flutuando por aí).

É bem difícil imaginar a dimensão e a importância disso tudo. A boa notícia é que o canal britânico de televisão BCC produziu um vídeo em 360 graus dentro do acelerador e você pode dar uma voltinha em um dos lugares mais importantes para a ciência moderna!

O vídeo de cerca de três minutos explica algumas características do acelerador, em inglês, mas mesmo para quem não entende a língua, o passeio pelas instalações é bem simples: basta clicar no vídeo e utilizar o mouse para arrastar e virar para o lado que desejar. Você também pode usar as setas para girar a câmera. Aproveite o passeio!

Se assim como nós, você também fica fascinado com essas estruturas, vai adorar conhecer histórias e saber como é trabalhar dentro de um acelerador. Isto, porque já entrevistamos brasileiros que trabalham em aceleradores de partículas pelo mundo, vem ler:

 

 – Conheça o jaraguaense que trabalha com aceleradores de partículas na Suécia.

O brasileiro que está há 17 anos trabalhando com aceleradores na Suíça.

Dez equações que mudaram o mundo

Confira quais são as dez equações que mudaram o mundo.

Enquanto alguns fogem delas nas aulas de exatas, outros são fascinados! Desde a antiguidade as equações e teoremas matemáticos vêm causando um grande impacto para a criação do mundo atual, seja por sua importância na ciência, tecnologia e até na filosofia. O fato é que elas podem ser revolucionárias. Veja a seguir dez equações que mudaram o mundo:

 1. Teorema de Pitágoras

Século 6 a.C.

Pitágoras (570 a.C.-495 a.C.)

Um dos teoremas mais conhecidos. Se você não lembra, vamos facilitar:

 

 “Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.”

ou ainda

“A hipotenusa ao quadrado é igual a soma dos catetos ao quadrado.”

 Lembrou? Praticamente tudo na engenharia civil passa pelo teorema de Pitágoras, que ajuda a fazer cálculos para triângulos e quaisquer outros polígonos. Grandes edifícios da Antiguidade foram construídos seguindo a equação, mesmo antes de Pitágoras escrevê-la – o mérito do matemático grego foi dar a ela uma formulação simples.

 

2. Números amigáveis

Século 9

Thābit ibn Qurra (826-901)

Qurra, nascido no Iraque, foi um dos expoentes da era de ouro do Islã. Entre seus feitos, ajudou a estabelecer conceitos importantes da álgebra, incluindo a noção de números amigáveis – são pares de números em que um deles é a soma dos divisores do outro. Sua equação foi usada, por exemplo, para cálculos de eclipses solares.

 

3. Logaritmos

1620

John Napier (1550-1617)

logaritimos

Antes do desenvolvimento do computador, o cálculo com os logaritmos era a maneira de se multiplicar grandes números.  Graças a Napier, matemático britânico, hoje é possível consultar tabelas para acelerar em muito os cálculos de matemáticos, astrônomos, engenheiros e físicos. Os logaritmos também estão na base da linguagem de programação dos computadores.

 

4. Função derivada do cálculo

1668

Isaac Newton (1643-1727)

Importantíssima, essa equação fundamenta todas as teorias que explicam como os seres vivos e os objetos se movem. Mede a taxa em que uma quantidade qualquer muda de acordo com o tempo. Está presente na ciência da computação, engenharia, economia e medicina.

A segunda lei de Newton, de 1686,  mostra que a força resultante que atua sobre um corpo é resultado da multiplicação da massa do corpo por sua aceleração. Ela ajuda a calcular a força necessária para mover determinada quantidade de massa – seja ela um carro ou um foguete.

 

 5. Lei da Gravitação Universal

1687

Isaac Newton (1643-1727)

Você lembra da história da maçã que caiu na cabeça de Isaac Newton enquanto ele admirava a lua no céu? Isso aconteceu em 1687. Também do gênio inglês, a Lei da Gravidade ou da Gravitação Universal nos fez entender não só por que as coisas caem no chão mas também como, por exemplo, um satélite artificial pode ser mantido no espaço.

 

6. Equação de onda

1746

Jean le Rond d’Alembert (1717-1783)

Uma série de descobertas e teorias sobre o comportamento das ondas culminou nesta equação do matemático francês, que descreve como o formato da corda se altera ao longo do tempo. A fórmula teve implicações importantes na teoria musical, mas é usada até para estudar terremotos.

 

7. Segunda lei da termodinâmica

1850

Ludwig Boltzmann (1844-1906)

Essa lei é um princípio de evolução porque determina em qual direção as possíveis transformações energéticas do mundo podem ser realizadas. Em uma época de grandes descobertas, o austríaco Boltzmann conseguiu explicar como os átomos interagem de forma a alterar o comportamento de grandes objetos. Sem a lei, seria quase impossível realizar a Revolução Industrial – que permitiu desenvolver motores a combustão e aparelhos refrigeradores.

8. Equação Maxwell-Faraday

1873

Michael Faraday (1791-1867) e James Clerk Maxwell (1831-1879)

Primeiro veio o inglês Faraday, que descobriu que eletricidade e magnetismo são forças relacionadas. Depois, o escocês Maxwell usou o trabalho de Faraday para desenvolver as bases do eletromagnetismo. As baterias de automóveis, as turbinas eólicas e as usinas hidrelétricas precisam dessa teoria, que é composta de quatro equações:

  • – Equação de Maxwell-Gauss
  • – Equação de Maxwell-Thomson
  • – Equação de Maxwell-Faraday
  • – Equação de Maxwell-Ampère

 

As quatro equações de Maxwell unificaram a eletricidade, o magnetismo e a óptica. Em linguagem matemática, representam os fenômenos básicos do eletromagnetismo.

Expressa a relação indissociável entre carga e campo: carga elétrica necessariamente gera campo elétrico, faz parte da sua natureza.

Indica a não existência de monopolos magnéticos na natureza. Há pesquisas em busca do monopolo magnético, mas até hoje nunca foi observado.

Traduz a geração de campo elétrico por um campo magnético variável no tempo. Este fenômeno é verificado pelo surgimento de uma corrente elétrica em um circuito, quando este é transpassado por um ímã.

Expressa a geração de campo magnético por uma corrente elétrica ou um campo elétrico que varia no tempo, fenômeno verificado pela mudança de orientação de agulhas magnéticas quando próximas de uma corrente elétrica.

 

Você encontra as equações de Maxwell expostas no Museu WEG.

Você encontra as equações de Maxwell expostas no Museu WEG.

 9. Equivalência entre massa e energia

1905

Albert Einstein (1879-1955)

relatividadeA Teoria da Relatividade de Einstein continua a revolucionar nossa vida até hoje, mostrando que a matéria pode ser convertida em energia e vice-versa. É que Einstein provou que massa é uma quantidade absurdamente condensada de energia. Isso mudou a ciência para sempre, ajudou no entendimento de buracos negros e outros fenômenos da astronomia e propiciou o surgimento da energia nuclear, inclusive da bomba atômica.

 

10. Teoria da informação

1949

Claude Shannon (1916-2001) e Warren Weaver (1894-1978)

 

As equações desta dupla americana têm muitas aplicações práticas , elas estabelecem os padrões de armazenamento e transmissão de informações. A fórmula é essencial na compressão de dados em formatos populares, do mp3 ao jpeg, e também no funcionamento das redes sociais.

 

Agora que você chegou até aqui, concorda que essas equações realmente revolucionaram nossa vida? Existem diversas outras equações importantíssimas, qual será a próxima? =)

magnetismo

#MomentoCientista: eletromagnetismo terrestre

Você sabia que nosso planeta se comporta como um grande ímã? Essa observação foi feita em 1600, quando o físico…

Você sabia que nosso planeta se comporta como um grande ímã? Essa observação foi feita em 1600, quando o físico e filósofo britânico William Gilbert assinalou essa semelhança. O fenômeno magnético terrestre, no entanto, já era usado há muito tempo, com as famosas bússolas em navegação.

Esse grande imã chamado Terra possui um campo magnético criado através do movimento constante de rotação. Inclusive, é por esse motivo que os polos sul e norte ganharam esse nome: o planeta também possui um magnetismo proveniente do movimento do seu núcleo.

Logo, se soltarmos um imã sobre a Terra, ele irá mostrar os lados norte ou sul, por esse motivo a bússola indica a direção norte, sendo que sua agulha aponta para uma direção de acordo com o magnetismo da Terra. Assim, como o princípio do eletromagnetismo de cargas positivas e negativas, dentro do magnetismo se aproximarmos dois pólos nortes eles se repelem, mas se forem pólos contrários a tendência é a atração.

E sabe o que nos mantém firmes na superfície e também nos protege das partículas de eletromagnetismo que vem do espaço? Ele mesmo: o magnetismo. O campo magnético da Terra protege o planeta dos chamados raios cósmicos, feixes de partículas de altas energias que vêm do Sol. Ao se aproximar da Terra, as partículas carregadas eletricamente são desviadas, devido à interação magnética, em direção aos polos. Essas partículas são desaceleradas ao entrar na atmosfera, emitindo radiação. A visualização desse fenômeno é chamada de AURORA, que pode ser Boreal (Norte) ou Austral (Sul).

Aurora Boreal

Aurora Boreal. Fonte: reprodução.

Podemos comprovar a perfeição de como funciona o magnetismo terrestre através de um experimento com uma bolinha de isopor, um imã e alguns grampos. Quer saber como? Veja neste vídeo como fazer seu próprio protótipo de eletromagnetismo terrestre em casa!

Viu só? É possível ver o magnetismo em 3D e associá-lo ao magnetismo da Terra. Uma experiência simples e muito interessante. Você pode substituir a limalha de ferro por grampos de grampeador “esmagadinhos”. =)

Os novos selos em homenagem a cientistas brasileiros

Confira quais os cientistas serão impressos numa edição limitada de selos dos Correios.

06 de fevereiro de 2019
...

Se tem uma coisa que nos anima é ver cientistas sendo reconhecidos e homenageados. E a animação aumenta ainda mais quando descobrimos que eles são brasileiros! Por isso, não podemos deixar de destacar que Os Correios lançaram novos selos homenageando dois cientistas tupiniquins. Com uma tiragem de 360 mil selos e valor de R$ 1,85 cada, além de servirem como comprovação do pagamento do serviço postal, há quem compre para colecionar, você conhece algum colecionador? Conta pra ele!

 

Cesar Lattes

 Um dos cientistas é o físico Cesar Lattes, responsável pela descoberta do méson pi, uma partícula subatômica, que o levou ao Nobel de Física de 1950. No entanto, o prêmio foi injustamente concedido ao físico britânico Cecil Frank Powell, acredita? Sobre o acontecido, em entrevista ao Jornal da Unicamp, em 2001, Lattes disse:

“Sabe por que eu não ganhei o prêmio Nobel? Em Chacaltaya, quando descobrimos o méson-pi, se publicou: Lattes, Occhialini [Giuseppe Occhialini] e Powell [Cecil Powell, físico britânico que ganhou o Nobel em 1950 por fotografar os núcleos atômicos e pela descoberta do méson]. E o Powell, malandro, pegou o prêmio Nobel pra ele. Occhialini e eu entramos pelo cano. Ele era mais conhecido, tinha o trabalho da produção de pósitrons em 1933. Depois fui para a Universidade da Califórnia, onde foi inaugurado o sincrociclotron em 1946. Já era 1948 e estava produzindo mésons desde que entrou em funcionamento em 46, tinha energia mais que suficiente. Então, detectamos, Garden [Eugene Garden] e eu, o méson artificial, alimentando a presunção de retirar do empirismo todas as pesquisas que se relacionassem com a libertação da energia nuclear. Sabe por que não nos deram o Nobel? Garden estava com beriliose, por ter trabalhado na bomba atômica durante a Guerra, e o berílio tira a elasticidade dos pulmões. Morreu pouco depois e não se dá o prêmio Nobel para morto. Me tungaram duas vezes.”

Lattes teve um notável trabalho na física nuclear, e grande importância na constituição da estrutura administrativa científica brasileira. Em 1946 criou o Centro Brasileiro de Pesquisas Físicas (CBPF). Também exerceu grande importância na criação do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). O nome do físico batizou a plataforma Lattes, sistema utilizado para cadastrar os currículos de cientistas brasileiros.

 

Johanna Döbereiner

 A engenheira agrônoma Johanna Döbereiner, pioneira nos estudos de biologia do solo, é também homenageada com um selo. Apesar de nascida na República Checa, Johanna veio ao Brasil em 1948, após vários obstáculos enfrentados com os males da Segunda Guerra e pós-guerra, como perseguições. Foi no Brasil que ela aprendeu a fazer ciência. Cientista mulher e imigrante numa era extremamente machista e xenofóbica, ela se destacou e recebeu inúmeros prêmios. Sendo indicada ao Nobel de Química em 1997.

Em entrevista ao Jornal Globo em 1979, destacou:

“A gente veio como imigrante, sabendo que escolheu o Brasil como pátria e não para mudar nada. Eu sabia que estava sem pátria e vim aqui procurar uma nova pátria. Então vim com mentalidade positiva”.

 Uma das maiores contribuições de Johanna, foi o melhoramento da produção de soja com a Fixação Biológica de Nitrogênio (FBN). Seus estudos diminuíram nossa dependência de fertilizantes nitrogenados, propiciando-nos a produção de soja mais barata do mundo e fazendo uma produção mais ecologicamente sustentável.

Em entrevista à revista Veja, em 1996, Döbereiner disse que “na década de 60, ir contra a adubação química era quase um sacrilégio. Os fertilizantes estavam revolucionando a agricultura. Só muito tempo depois vi que nossas pesquisas não só permitiam uma produção mais barata como também mais ecológica, porque não poluía os rios nem o solo”.

 Gostou de descobrir um pouquinho mais sobre esses dois cientistas? Os dois selos são interligados por um elemento em comum: um átomo. As ilustrações buscam representar as contribuições dos dois para a ciência. Quer descobrir mais sobre o mundo da Ciência e Tecnologia? Acompanhe nossa página no Facebook.

 

Referência: Ciencianautas.com

Museu WEG recebe o Festival de Música de Santa Catarina

FEMUSC inicia sua programação em 24/01. Apresentação no Museu WEG será dia 30/01 às 16h.

24 de janeiro de 2019
...

O Festival de Música de Santa Catarina, também conhecido como Femusc, é o maior festival-escola não competitivo do Brasil, realizado anualmente em Jaraguá do Sul. Nele, músicos profissionais e estudantes de mais de 20 países se reúnem e compartilham o palco em grandes apresentações abertas ao público, com entrada franca. A WEG é uma das empresas que apoiam o Festival desde sua primeira edição, através da Lei Rouanet de Incentivo à Cultura. Isso acontece pois acredita na importância da Música na transformação social, aculturamento formação de cidadania.

A programação, que neste ano vai de 24 de janeiro a 02 de fevereiro conta com apresentações que transcendem os teatros e chegam a locais públicos, escolas, entidades comunitárias e também ao Museu WEG.

O principal objetivo do festival é democratizar, popularizar e internacionalizar o aprendizado de música erudita no Brasil, e além de proporcionarem concertos espetaculares, os alunos participam de mais de 60 cursos.

A programação completa pode ser encontrada no site: www.femusc.com.br

Neste ano, a apresentação no Museu WEG será dia 30/01 das 16h às 17h. Momento de nos aproximarmos destes brilhantes musicistas que tocarão pertinho do público. Não tem necessidade de retirar ingressos antecipados é chegar, sentar e apreciar.

Para as apresentações que ocorrem no teatro da SCAR é necessário retirar os ingressos na bilheteria. As retiradas são feitas com dois dias de antecedência às datas da programação ou até uma hora antes dos espetáculos, mediante disponibilidade de ingressos.

1º livro técnico sobre máquinas elétricas do Brasil é lançado por engenheiro da WEG

Dividido em 4 volumes é o material mais completo e aprofundado sobre o assunto hoje no Brasil, já que compila seus 45 anos de experiência com máquinas elétricas como funcionário da WEG, pesquisador, projetista e analista de máquinas.

Esta é mais uma daquelas histórias que fazem a gente se orgulhar. Fredemar Rüncos, PhD em Engenharia Elétrica pela UFSC (Universidade Federal de Santa Catarina) começou a trabalhar na WEG e fazer a escolinha técnica da WEG com 16 anos e hoje, se diz realizado com a concretização de um sonho: registrar tudo o que sabe sobre máquinas elétricas.

Segundo ele, este livro, dividido em 4 volumes é o material mais completo e aprofundado sobre o assunto hoje no Brasil, já que compila seus 45 anos de experiência com máquinas elétricas como funcionário da WEG, pesquisador, projetista e analista de máquinas.

Talvez você esteja se perguntando como surgiu essa ideia. E nós vamos responder com as palavras dele: “Após finalizar o meu doutorado, eu pensei: O que vou fazer agora? Vou registrar tudo o que eu sei.”. E nós do Museu WEG, não poderíamos deixar de comemorar a conclusão deste feito e parabenizar por esse resultado incrível.

 

O processo de criação

Escrito ao longo de 9 anos, apenas no seu tempo livre aos finais de semana, ele nunca pensou em desistir. Afinal, o material é resultado da sua paixão pela física, pelas máquinas elétricas, pelo seu trabalho e sua determinação em cumprir a meta que propôs a si mesmo em 2009.

Com a colaboração da Editora OitoNoveTrês, o livro intitulado Projeto e Análise da Máquina Elétrica Trifásica nasce em forma de quatro volumes e mais de 1.500 páginas.

A WEG contribuiu financeiramente para a impressão da primeira tiragem, de 250 exemplares de cada volume.

 

Conheça o livro

O material é voltado para profissionais do setor, cursos de graduação e pós-graduação e estudantes de engenharia elétrica. Os quatro volumes abordam a fundo os tipos de máquinas trifásicas e contam com imagens cedidas pela própria WEG. Os livros explicam e exemplificam com ilustrações como criar um pré-projeto de máquinas elétricas, além de se aprofundar na teoria do campo girante, nos parâmetros físicos da máquina, nas perdas e adensamentos de corrente, a modelagem e aplicações.

livros

Volume I: Aspectos Construtivos da Máquina Elétrica

Volume II: As Harmônicas do Campo Girante e Parâmetros da Máquina Elétrica

Volume III: As Perdas da Máquina Elétrica

Volume IV: A Modelagem e Aplicação da Máquina Elétrica

 

O conhecimento gerado será de grande utilidade para o desenvolvimento de novas tecnologias no setor e para a formação de profissionais no país. Como o próprio Rüncos revelou em entrevista, são poucos os especialistas em máquinas elétricas no Brasil, e esta é uma especialidade que vai proporcionar ao Engenheiro com conhecimento em máquinas elétricas um mercado de trabalho por muitos e muitos anos. Isso porque, como físico, afirma que vai demorar para a ciência desenvolver uma nova teoria de conversão eletromecânica que substitua a máquina elétrica.

 

Minibiografia

Fredemar Rüncos é bacharel em Física pela Universidade Federal do Paraná (1980), tem graduação em Engenharia Elétrica pela Universidade Federal do Paraná (1980), mestrado em Engenharia Elétrica pela Universidade Federal de Santa Catarina (2001) e doutorado em Engenharia Elétrica pela Universidade Federal de Santa Catarina (2006). É professor de graduação e pós-graduação do Centro Universitário de Jaraguá do Sul (Católica SC) e Consultor em D&IT – WEG Energia S/A. Tem décadas de experiência na área de Engenharia Elétrica, com ênfase em Máquinas Elétricas Girantes.

Foto de capa: Eduardo Montecino/OCP News

Fonte da matéria: OCP News e Entrevista exclusiva com o autor Fredemar Rüncos

Como se distribui energia elétrica em uma cidade?

Já imaginou se sua cidade não tivesse energia elétrica?

Já imaginou se sua cidade não tivesse energia elétrica? Talvez você não tivesse um celular ou um computador para usar. Banho quente? Só a gás. Geladeira e máquina de lavar roupas? Nada disso. Ruas iluminadas e máquinas funcionando nas fábricas? Também não.

Já sabemos o quanto a energia elétrica é importante. Mas, você sabe qual é o caminho que ela faz até chegar à tomada da sua casa? A energia surge do movimento de geradores e passa por estações transformadoras e redes de fio de alta tensão para percorrer um grande caminho e chegar até você.

Passo 01 – estação geradora

A energia elétrica pode vir de diferentes fontes. No Brasil, a mais utilizada é a das usinas hidrelétricas. Nelas, a queda d’água movimenta um gerador que cria um campo magnético, fazendo surgir uma corrente elétrica alternada.

Passo 02 – aumento de tensão

Da usina, a energia vai para subestações de transmissão, onde passa por um transformador que irá aumentar sua voltagem de 6.600 volts para 345 mil volts. Em seguida, segue pelas linhas de alta tensão.

Passo 03 – transporte

A eletricidade é levada por centenas de quilômetros através de torres de alta tensão. Neste caminho, parte da energia é perdida sob a forma de calor. Para compensar essa perda, ela é transportada em altíssima voltagem.

Torre Elétrica

Passo 04 – diminuindo a tensão

Próximo às cidades, a eletricidade chega em subestações de distribuição que diminuem sua voltagem, primeiramente para 138 mil volts e, logo em seguida, para 13.800 volts. É nesta tensão que ela segue para a rede de distribuição, percorrendo a fiação aérea ou subterrânea que a leva até as ruas, indústrias e residências.

 

A energia nas indústrias e residências

No Brasil, as indústrias são responsáveis por consumir quase metade da energia produzida. Geralmente, as empresas de grande porte possuem suas próprias subestações, com transformadores que alteram a tensão elétrica conforme a necessidade.

Para as residências, a distribuição é dividida em regiões. Cada circuito de 13.800 volts atende cerca de 5 a 10 mil lares. Mas, antes disso, o circuito passa por mais um transformador. Esse transformador é o que vemos nos postes de luz e é ali que a tensão finalmente cai para 110 ou 220 volts.

Antes de chegar nas tomadas de nossa casa, a energia passa por um quadro de luz, aquele equipamento que conhecemos como “relógio”, que é onde a fornecedora irá medir o consumo mensal de cada lar. Assim podemos usar o chuveiro elétrico, televisão, computador… e não ficar no escuro, claro! 🙂

 

Aprendendo com o Museu WEG

Se você quer saber mais sobre a distribuição de energia elétrica, faça uma visita ao Museu WEG de Ciência e Tecnologia! Seja sozinho ou em grupo, aqui é possível aprender de forma interativa sobre todo o processo. No equipamento abaixo, por exemplo, o visitante poderá conhecer as diferentes formas de geração de energia e suas fontes consumidoras. Ao construir cada um dos itens, é possível notar quais são os impactos sociais, ambientais e financeiros na nossa vida.

 

Cadeia integrada - Museu WEG

Cadeia integrada – Museu WEG

 

Conheça o jaraguaense que trabalha com aceleradores de partículas na Suécia

O avanço da tecnologia exige ferramentas cada vez melhores, já falamos aqui sobre os tipos de aceleradores de partículas e…

21 de setembro de 2018
...

O avanço da tecnologia exige ferramentas cada vez melhores, já falamos aqui sobre os tipos de aceleradores de partículas e como existem profissionais em laboratórios gigantescos, descobrindo coisas sobre nossa saúde, existência e matéria. Algo comum para pesquisadores, porém um mistério para a população em geral. Mas não para o jaraguaense Rafael Baron, com quem tivemos uma conversa super inspiradora que você poderá ler logo abaixo.

O Rafael foi o primeiro funcionário dedicado ao projeto Sirius, laboratório de aceleradores de elétrons de Campinas, um dos mais sofisticados do planeta. Hoje, o engenheiro de Jaraguá do Sul trabalha na Suécia, no European Spallation Source ERIC (ESS), um dos maiores projetos de infraestrutura de ciência e tecnologia que está sendo construído atualmente. O projeto e a construção das instalações incluem o acelerador de prótons linear mais potente já construído.

Ficou curioso? Então embarque com a gente nessa viagem para dentro do ESS! Confira a entrevista exclusiva abaixo com o Rafael!

Museu WEG: Como você chegou até o European Spallation Source ERIC e como começou a trabalhar com aceleradores de partículas? É uma paixão antiga ou descobriu depois de alguma experiência?

Rafael: Essa é uma pergunta muito interessante, pois ela tem muita relação com minha vida e meus amigos de Jaraguá do Sul. Estudei praticamente a minha vida inteira no Colégio Jaraguá, e me lembro frequentemente de coisas que aprendi na escola, sejam estes ensinamentos para a vida ou ensinamentos técnicos. Sou muito grato a todos os meus colegas, professores, zeladores, guardas, o pessoal da cantina, etc. Todos foram muito importantes na formação.

“A minha relação inicial com a engenharia é estreitamente relacionada com a música.”

Eu sempre gostei muito de violão, então comecei a fazer um curso de música quando tinha aproximadamente 13 anos. Ao mesmo tempo, eu sempre gostei de vasculhar os equipamentos eletrônicos que tínhamos em casa. Até que um dia decidi fazer meu próprio amplificador de guitarra. E foi aí que tudo começou. Precisei visitar muitas vezes a biblioteca pública, a UNERJ, falar com diferentes pessoas, pesquisar muito sobre o assunto, e isso me fez aprender muito.

Além disso, uma pessoa muito importante nesta etapa foi um jaraguaense muito conhecido na região, o Sr. Zehnder. Eu lembro que, sempre que possível, eu visitava a loja de rádios e componentes eletrônicos aos sábados de manhã para conversar com seu Zehnder sobre amplificadores valvulados. Até que um dia ele me deu algumas válvulas velhas de rádio e eu iniciei o projeto de amplificador de guitarra valvulado.

Foi nessa época que aprendi muita coisa sobre sistemas eletrônicos. Quando não encontrava os componentes, transformadores e válvulas, eu ia até o lixão de Jaraguá (que ficava onde hoje é a Arena Jaraguá) para pegar componentes de rádios e televisões antigas. Aprendi muito com as pessoas que trabalhavam no lixão e pude também entender melhor as condições em que elas trabalhavam.

Depois de algum tempo, quando estava no terceiro ano do CEJA, eu estava muito em dúvida sobre qual área profissional seguir. Até que o pai de um amigo meu que trabalhava na WEG, Paulo Torri, me levou para uma visita na empresa. E foi aí que decidi realmente seguir a área de engenharia elétrica. Então comecei o curso na UDESC, em Joinville, mas ainda nos semestres iniciais passei no vestibular para a UNICAMP e decidi me mudar para Campinas (SP). Na UNICAMP, tive diversas oportunidades de trabalho e aprendizado, e foi no último ano de faculdade que eu consegui uma vaga para trabalhar com aceleradores, no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), no Laboratório Nacional de Luz Síncrotron (LNLS).

Após um ano trabalhando com uma bolsa de iniciação científica, fui contratado como o primeiro funcionário dedicado ao projeto Sirius, onde trabalhei numa equipe fantástica que desenvolve sistemas de diagnóstico para aceleradores. Portanto, o meu trabalho com aceleradores foi algo que eu descobri devido ao LNLS em Campinas, que me possibilitou conhecer pessoas de diversos aceleradores no mundo. Após algum tempo, recebi uma proposta de emprego do ESS, a qual aceitei.

Museu WEG: Você pode comentar como é o dia a dia no ESS?

Rafael: No ESS, trabalhamos diariamente com pessoas de diversas nacionalidades. O ESS é um projeto muito internacional, onde aproximadamente metade dos funcionários são suecos e a outra metade são de outras 49 nacionalidades. As minhas responsabilidades são relacionadas com uma atividade denominada Líder de Sistema de um tipo específico de sistema do acelerador, o Monitor de Posição de Feixe (BPM – Beam Position Monitor). A minha equipe trabalha com diferentes grupos do ESS, mas também temos parceiros em diferentes países europeus, como por exemplo, Alemanha, Espanha e Itália. Reuniões entre essas equipes são frequentes e diárias, onde decisões precisam ser tomadas rapidamente.

Os suecos têm um horário de trabalho que vai de 9 horas da manhã até as 17 horas, sendo muito raro ver pessoas no escritório após este horário. Porém, durante este período as atividades são intensas. É frequente precisar trabalhar com alguma pessoa e descobrir que ela está em uma licença de trabalho, seja para aprimoramento técnico (cursos) ou então em licença paternidade/maternidade. Na Suécia temos essa interessante política, onde os pais que tem um filho, podem tirar auxílio parental de até 480 dias, divididos entre o pai e a mãe, sendo o pai obrigado a tirar pelo menos 3 meses de licença. Desta maneira os pais dividem o tempo de cuidado da criança nos primeiros meses de vida.

Museu WEG: Quais os projetos mais legais que já participou ou que está participando?

Rafael: Eu trabalho com diversos projetos no ESS. Mas o mais interessante é o Monitor de Posição do Feixe, onde o sistema é responsável por monitorar a posição e velocidade do feixe de elétrons ao longo do acelerador de 600 metros. Neste sistema, o monitoramento do feixe de prótons, composto por milhares de pequenos pacotes de prótons viajando a uma velocidade próxima a velocidade da luz (aproximadamente 300.000 km/s), distanciados de 2.8 nanosegundos (um bilionésimo de segundo), e detectados a uma taxa de 100 milhões de vezes por segundo em 4 monitores simultâneos, sincronizados em intervalos de tempo da ordem de femtosegundos! É feito por 100 BPMs espalhados ao longo dos 600 metros de acelerador. O sistema é responsável por monitorar a posição do feixe de Prótons no acelerador e também por fazer a leitura e correção da energia do feixe de Prótons.

Imagem-RafaelFoto aérea do acelerador, que fica em um túnel linear no subsolo

– Para ver mais fotos do ESS, clique aqui.

– Se você tem curiosidade de saber como é o ESS por dentro (lembre-se que ele ainda está em construção), o Rafael sugere que você assista a esse vídeo.

Museu WEG: Para você, qual a importância de um laboratório de aceleradores de partículas para a população?

Rafael: Aceleradores de partículas estão diretamente e indiretamente presentes em nossas vidas, diariamente. Vou citar alguns exemplos: Se observarmos os componentes que temos dentro de nossos celulares, relógios, computadores e outros equipamentos eletrônicos, poderemos observar que eles são compostos por diversos dispositivos menores, baseados em materiais que apresentam uma característica denominada semicondutividade. Durante a fase de desenvolvimento e as etapas da produção destes materiais semicondutores, esses dispositivos passam por aceleradores de partículas dos mais variados tipos. Para desenvolver o semicondutor, aceleradores como o Sirius, são usados para observar a estrutura do material. Na produção dos semicondutores, aceleradores chamados de implantadores de íons são utilizados para tal função.

Outro exemplo: quando temos alguma pessoa de nossa família que está com câncer e precisa passar por uma etapa de radioterapia, mal sabem os pacientes que a fonte de radiação vem de um acelerador linear, utilizado para gerar e implantar a radiação na região afetada e assim matar as células cancerígenas. Outros tipos de tratamentos de câncer, utilizando aceleradores de prótons combinados com ressonância magnética nuclear, estão sendo atualmente utilizados em alguns hospitais e, talvez, em breve teremos aceleradores melhores para tratamento da doença. Quem sabe, teremos equipamentos brasileiros para esta finalidade. A engenharia brasileira é muito capaz de desenvolver estes equipamentos.

Outra aplicação presente diariamente em nossas vidas está relacionada ao desenvolvimento de remédios. Durante sua fase de projeto, alguns são submetidos à radiação gerada por aceleradores de partículas para visualização e engenharia de sua estrutura molecular.

Diversos outros exemplos são possíveis, sendo estes somente alguns poucos tipos de aceleradores e suas utilizações.

***

Incrível, não é mesmo? O Rafael começou a se interessar por engenharia quando decidiu criar seu próprio amplificador de guitarra e hoje trabalha em dos mais importantes projetos de infraestrutura de ciência e tecnologia do mundo!

Ele ainda ressaltou a importância de compartilhar a realidade do ESS entre as pessoas interessadas em aprender sobre a área. Saber com tantos detalhes sobre sua profissão, e como os aceleradores de partículas estão tão presentes em nossa vida, foi realmente inspirador.

Agradecemos ao Rafael Baron por compartilhar sua experiência e conhecimento com todos nós. Agora, sua história é motivo de orgulho e exemplo para todos os jaraguaenses.

Quais as 10 últimas descobertas premiadas pelo Nobel de Física?

O Nobel de Física é entregue anualmente pela Academia Real das Ciências da Suécia aos cientistas dos vários campos da…

O Nobel de Física é entregue anualmente pela Academia Real das Ciências da Suécia aos cientistas dos vários campos da Física. É um dos cinco Prêmios Nobel estabelecidos por Alfred Nobel em 1895, premiando as contribuições excepcionais na Física. Conforme o desejo de Alfred Nobel, o prêmio é administrado pela Fundação Nobel e os premidos são escolhidos por um comitê de cinco membros, eleitos pela Academia Real das Ciências da Suécia.

O primeiro Nobel de Física foi entregue em 1901 ao alemão Wilhelm Röntgen. Cada premiado recebe uma medalha de ouro, um diploma e uma quantia em dinheiro, que é decidida pela Fundação Nobel previamente. A premiação acontece anualmente em Estocolmo no dia 10 de dezembro, o aniversário da morte de Alfred Nobel.

Mas quais foram as 10 últimas descobertas premiadas pelo Nobel de Física? Vamos descobrir a seguir:

2017
O prêmio foi para o time que descobriu as ondas gravitacionais, um fenômeno que Einstein previu, mas que jurava que jamais encontraríamos: Rainer Weiss, Barry Barish e Kip Thorne, todos dos Estados Unidos.

2016
David Thouless, Duncan Haldane e Michael Kosterlitz receberam o prêmio por seus trabalhos sobre os isolantes topológicos, materiais “exóticos” que em temperaturas mais altas, criam o quarto estado de matéria, o plasma. Mas em temperaturas extremamente baixas, desenvolvem supercondutividade e a superfluidez.

2015
Takaaki Kajita e Arthur B. McDonald, pela descoberta das oscilações dos neutrinos, que demonstram que estas enigmáticas partículas têm massa.
A descoberta de ambos os físicos “mudou nossa compreensão do funcionamento mais profundo da matéria e pode ser crucial para nossa visão do universo”, disse a Academia de Ciências da Suécia, que concede o prêmio anualmente.

2014
Por muitos anos, a indústria teve à sua disposição LEDs de cor vermelha e verde. No entanto, para obter luz LED branca, era necessário ter a componente azul. Nos anos 1990, os cientistas Isamu Akasaki e Hiroshi Amano e Shuji Nakamura conseguiram produzir essa luz, possibilitando o uso de LEDs para iluminação.

2013
François Englert e Peter Higgs receberam premiação por trabalhos sobre o bóson de Higgs, peça que faltava para legitimar o Modelo-Padrão da Física. Segundo esta teoria, formulada nos anos 1960, o universo é composto de 32 elementos fundamentais. O bóson de Higgs era o único desses elementos cuja existência fora inferida, mas nunca comprovada.

2012
Serge Haroche e David Wineland, por pesquisas em óptica quântica que possibilitaram a construção de relógios extremamente precisos e marcaram o primeiro passo para computadores extremamente rápidos.

2011
Os cientistas norte-americanos Saul Perlmutter, Adam Riess e Brian Schmidt receberam o Nobel de física de 2011 por pesquisas que mostraram como a expansão do Universo estava acelerada. Os estudos se basearam na observação da luz de supernovas – explosões que marcam o fim da vida de estrelas com muita massa.

2010
Andre Geim e Konstantin Novoselov receberam a premiação por experimentos inovadores com grafeno, um material mais forte que diamante, condutor de calor e superflexível. Um material revolucionário que transformou a eletrônica, em particular a construção de computadores e transistores.

2009
Charles Kao, Willard Boyle e George Smith, por pesquisas sobre a fibra óptica e os semicondutores, responsáveis por importantes avanços tecnológicos na telefonia, transporte de dados e fotografia.

2008
Este Prêmio Nobel de Física foi dividido entre dois cientistas. Yoichiro Nambu descobriu o mecanismo de simetria quebrada espontânea na física subatômica, e Makoto Kobayashi e Toshihide Maskawa descobriram a origem da simetria quebrada, que prevê a existência de pelo menos três famílias de quarks na natureza.

Quem será o grande ganhador deste ano? Façam as suas apostas!

Fontes: Jornal de Santa Catarina, G1, O Globo, Só Física e Galileu Galilei