Assim como a matemática e a escrita, o estudo das ciências nas séries iniciais é extremamente pertinente, já que nesta faixa etária as crianças são naturalmente curiosas, investigativas e observadoras.
A ciência explica quase tudo que nos cerca. Sua importância é gigantesca para nossas vidas e tudo o que acontece ao nosso redor, desde coisas básicas no quintal de casa até questões mais complexas, como as teorias sobre o universo. É por isso que é tão importante ensinar ciência para as crianças — para que elas possam entender o mundo em sua volta durante sua formação. Em época de retorno escolar, que tal falarmos sobre essa matéria tão incrível para o desenvolvimento dos pequenos?
A ciência muda a forma como enxergamos o mundo
Depois de estudar alguns conceitos básicos da ciência é possível entender o mundo de maneira diferente, isto, porque seu estudo vai fazer com que as crianças observem o mundo em seus detalhes — analisando, aprendendo conceitos e descobrindo como as coisas surgem e funcionam.
Ajuda a pensar
Não apenas a pensar, mas a direcionar o pensamento. A ciência toca nos miúdos fazendo com que as crianças consigam compreender as coisas como um todo. E, através de questionamentos importantes, desperta ainda mais o senso de curiosidade, fazendo com que elas pensem mais sobre as coisas ao seu redor.
A ciência ajuda a entender o mundo ao nosso redor
Explica o mundo
Por meio da ciência as crianças descobrem os principais fenômenos da natureza, podendo reunir informações sobre chuva, furacões, nevascas, terremotos e maremotos, descobrindo como se formam e o que acontece a partir deles, por exemplo.
Aproxima da ideia de preservação
Uma criança capaz de entender o meio ambiente através da ciência, poderá entender melhor sobre seu dever de preservá-lo. Ao estudar a natureza, as crianças passam a ter maior conscientização da importância das ações que preservam o planeta que vivemos.
É um investimento no futuro
Ensinar ciência é contribuir com a educação científica e investir em um futuro próximo, onde nossas crianças serão as protagonistas. Já que neste universo nada é um conhecimento acabado, elas podem sempre aprender mais e ter novos assuntos para estudar no dia a dia.
Em resumo, ensinar ciência para as crianças colabora para a compreensão do mundo, suas transformações e nosso papel como parte do universo! Estimular a participação ativa das crianças e trabalhar de forma dinâmica e demonstrativa é uma das maneiras eficazes de fazer isto. Você já conhece nossas Oficinas Educativas? Dê uma olhadinha: https://museuweg.net/educacao/oficinas-educativas — aqui no Museu WEG somos entusiastas do ensino dessa área tão relevante para nossas vidas. =)
Ao pensar no futuro do trabalho, a automação, inteligência artificial e robótica são assuntos corriqueiros, já que muitas pessoas acreditam que seu trabalho poderá ser substituído pela tecnologia.
Segundo um estudo do MIT, robôs serão colegas dos humanos, e não rivais. A pesquisa aponta que o futuro do trabalho está na colaboração entre seres humanos e máquinas — os robôs vão executar muitas tarefas hoje desempenhadas por humanos, mas também vão criar novos tipos de empregos.
O estudo apresenta algumas razões para acreditar que os robôs não vão roubar nossos empregos. Por exemplo, mesmo em situações que a tecnologia pode executar os serviços, não é proveitoso para a empresa demitir os funcionários e formar equipes 100% robóticas. A prova disso aconteceu no século 20, quando os robôs começaram a ser inseridos na indústria e a demissão em massa dos trabalhadores causou um forte impacto financeiro para as fábricas.
Outro argumento é que os humanos são a parte “viva” de uma empresa. É a parte que traz inovações para os negócios. A inteligência artificial é incapaz de tomar decisões complexas ou decidir o melhor rumo em disputas comerciais, por exemplo. Na visão de alguns participantes do estudo, a introdução de novas tecnologias gera o crescimento do negócio, gerando mais empregos, não menos, afirmam também que os robôs não substituem os humanos, mas os completam.
Segundo estudo do MIT, não é proveitoso demitir os funcionários e formar equipes 100% robóticas
Acredita-se que no futuro os robôs vão dominar os setores de estocagem, transporte, limpeza; além de tarefas físicas que exigem colheita, inclinação ou agachamento. Eles vão fazer tudo o que chamamos de os 5 ‘Ds’: dirty, dangerous, difficult, dull and distant (sujo, difícil, perigoso, maçante e distante). O uso eficiente da tecnologia otimiza as funções do trabalhador, que pode então usar todo o seu potencial e se tornar mais produtivo. Muitos sistemas robóticos são eficazes, mas não funcionam sem o trabalho dos funcionários no comando.
WEG Automação
É provável que a automação se torne decisiva para o crescimento das corporações. Sabendo disso, a WEG oferece soluções para a indústria 4.0, unindo tecnologia, processos e pessoas de uma forma única.
WEG oferece soluções para indústria inteligente
Essa integração entre máquinas, capazes de tomar decisões descentralizadas e cooperar entre elas e com humanos, é possível graças a ferramentas como big data, computação na nuvem e Internet das Coisas – Internet of Things (IoT). Esta última, combinada com sistemas automatizados, permite conectar a internet com objetos, para muito além de smartphones, tablets e computadores. Com soluções como essa, a indústria ganha em eficiência, resultado da economia de recursos, aumento de produtividade e redução do tempo de inatividade.
Graças ao trabalho vital dos seres humanos, é possível combinar pessoas, empresas, softwares e produtos inteligentes. Conheça mais sobre as soluções de automação e indústria 4.0 oferecidas pela WEG em: https://www.weg.net/institutional/BR/pt/solutions/industry-40
Nebulosas, supernovas, sistemas estelares, galáxias, a primeira viagem à Lua, a NASA (Agência Espacial dos Estados Unidos) acumula desde 1958 milhares de imagens e fotos do espaço sideral em seus arquivos.
Há alguns anos, o site da agência foi atualizado para que o acesso a essas imagens ficasse mais fácil, pondo a um par de cliques milhares de fotos incríveis, em alta resolução, procedentes dos arquivos de diversos centros de pesquisas.
Uma galeria viciante! É possível passar horas admirando as imagens que podem ser filtradas por palavras-chaves, datas ou viagens espaciais. Além do site, a agência possui uma conta no Twitter, com milhões de seguidores, onde compartilha imagens do dia a dia:
Pesquisadora-chefe de fotografia da NASA durante 30 anos e grande conhecedora desses arquivos fotográficos, Connie Moore apontava em um artigo no Google Arts and Culture quais foram as imagens mais solicitadas quando ela estava a cargo do arquivo. Apesar da passagem dos anos, algumas continuam despertando a mesma curiosidade do público. O jornal EL PAÍS fez uma seleção das imagens mais baixadas do site. A ordem de popularidade varia a cada dia, mas as imagens listadas se mantém entre as campeãs de downloads. Vamos ver quais são?
1. Vista da Terra
Uma das imagens mais detalhadas da Terra já feitas até hoje. Chamada de Blue Marble Earth (“Terra bola de gude azul”), foi feita com uma superposição de imagens do instrumento Visir, a bordo do satélite Suomi NPP. Na foto, podemos ver com riqueza de detalhes o Hemisfério Norte. Connie Moore diz que essa imagem de 2012 foi vista mais de seis milhões de vezes na conta do Flickr da NASA.
2. Blazar
Blazar é uma fonte de energia muito compacta e altamente variável, associada a um buraco negro. À medida que a matéria cai em direção ao buraco negro supermaciço no centro da galáxia, parte dela se acelera para fora quase à velocidade da luz, ao longo de vários jatos que apontam em direção oposta. Quando um destes jatos aponta para a Terra, a galáxia parece especialmente brilhante. Impressionante!
3. Auroras na atmosfera de Júpiter
Graças ao telescópio Hubble, cientistas puderam descobrir estes fenômenos de luz na atmosfera do maior planeta do sistema solar, Júpiter. As auroras se produzem quando as partículas de alta energia estão perto dos polos magnéticos de um planeta e colidem com átomos de gás.
4. Vista da Terra da Lua
Em julho de 1969 a nave Apollo 11 captou uma das imagens mais célebres do acervo da NASA. Nela a Terra aparece se erguendo sobre o horizonte da Lua. Tripulantes da Apollo 8 haviam feito uma foto semelhante a partir do satélite natural, um ano antes, que ficou conhecida como Earthrise (“nascer da Terra”).
5. A espada do Orion
Feita pelo telescópio espacial Spitzer, esta imagem mostra a nebulosa de Orion, considerada pela NASA como a “fábrica maciça de estrelas mais próxima da Terra”. É uma das nebulosas mais brilhantes que existem, razão pela qual pode ser vista perfeitamente no céu noturno. As nebulosas são formadas por grandes nuvens de poeira e gás.
6. Primeiro passeio pelo espaço
Em 1965, o astronauta Edward H. White II, piloto do voo espacial Gemini-Titan 4, tornou-se a primeira pessoa a caminhar no espaço. Permaneceu fora da nave por 21 minutos, conectado à nave por um cabo umbilical de sete metros. Dois anos depois, em 27 de janeiro de 1967, White morreu no incêndio da Apollo/ Saturno 204 no Cabo Kennedy.
7. A montanha mística
Mais uma vez ele: o telescópio espacial Hubble captou em 2010 esta formação de gás e poeira na nebulosa de Carina. Esta imagem foi escolhida para celebrar os 20 anos do Hubble. Surreal, né?
8. Vistas únicas da Via Láctea
Para celebrar o Ano Internacional da Astronomia, em 2009, produziu-se este trio de imagens da região central da nossa galáxia. Isto foi possível graças ao trabalho combinado dos grandes observatórios da NASA, o telescópio espacial Hubble, o telescópio espacial Spitzer e o Observatório de Raios-X Chandra.
9. Aldrin caminha sobre a superfície lunar
Em 20 de julho de 1969, o astronauta Edwin E. Aldrin, piloto do módulo lunar, caminha sobre a superfície do satélite durante a atividade externa da Apollo 11. A imagem foi feita pelo conhecido astronauta Neil Armstrong.
10. Andrômeda
Criada pela NASA Galaxy Evolution Explorer, a imagem mostra a galáxia Andrômeda, a mais maciça do grupo local de galáxias que inclui a Via Láctea.
11. Buraco negro
Esta imagem gerada por computador mostra um buraco negro supermaciço no núcleo de uma galáxia.
12. Solo de Marte
Tirada em 1997, a foto mostra o solo e a atmosfera do planeta vermelho. Quem topa um passeio?
13. A Terra e a Lua
Durante seu voo, a sonda Galileo, da NASA, devolveu imagens da Terra e da Lua que foram combinadas para criar esta.
14. Lua
A sonda Galileo registrou esta imagem da Lua em 7 de dezembro de 1992, no seu trajeto para explorar Júpiter.
15. Nebulosa Helix
Sua forma de olho gigante e suas cores vivas fizeram dela uma das nebulosas mais conhecidas. Esta imagem em infravermelho da nebulosa Helix foi tirada pelo Telescópio Spitzer da NASA.
Dá vontade de ficar horas e horas explorando essas imagens, né? E pensar que a Ciência e Tecnologia possibilitam imagens cada vez melhores, em altíssima definição. Quer ver mais? Então clica no site a seguir e divirta-se! 😉 https://www.nasa.gov/multimedia/imagegallery/
A matemática e a música estão naturalmente presentes no nosso dia a dia, são tantas atividades cotidianas movidas pelo som e pelos cálculos, que não nos damos conta da sua presença. A relação entre as duas áreas vai muito além dos verbos — contar e cantar —, nesse texto vamos explicar um pouquinho sobre essa antiga relação, para se ter uma ideia, os gregos, no século VI a.C. consideravam que a música encerrava uma aritmética oculta.
Para entender melhor, vamos ver alguns conceitos básicos da música:
Música
Chamamos de “acordes” três notas executadas simultaneamente em um instrumento musical. Os acordes são divididos em consonantes ou dissonantes, sendo que os primeiros são normalmente aprendidos antes de tudo, e os segundos, são usados por instrumentistas que já possuem mais conhecimento, prática e técnicas avançadas. Os acordes consonantes são agradáveis aos ouvidos e são suficientes para executar qualquer música, já os dissonantes parecem fora de combinação melódica, são mais complexos e enriquecem a composição.
A relação com a matemática
A matemática é utilizada pelos estudiosos da música como uma forma de facilitar suas teorias a respeito da estruturação musical, além de comunicar novas maneiras de ouvir música. Da matemática, são usadas na música, a teoria dos conjuntos, a álgebra abstrata e a teoria dos números. Para compreender essa relação, imagine que compositores já utilizaram em seus trabalhos as escalas musicais, a proporção áurea e o número de Fibonacci.
Uma relação muito antiga.
Apesar de terem ligação, a matemática e a música são estudadas de maneira separada há muito tempo, mas sempre tiverem uma relação entre si. As escalas musicais foram expressadas de maneiras diferentes, variando de acordo com os povos. Filósofos como Erastóstones e Pitágoras, por exemplo, criaram escalas e formas de organizá-las, já os gregos faziam essas escalas baseadas nos tetracordes, com sete tons. Com os filósofos, a afinação que usava recursos de quinta passou a ser utilizada, além de usar os números entre 1 e 4 para gerar as notas de uma escala.
Além disso, quando falamos em ritmo musical, estamos associando o ritmo ao tempo e suas divisões, além das frequências, sons e timbres. Chamamos de compassos os períodos que se repetem dentro de uma música – ou seja, são tempos que se repetem. Você pode assistir ao documentário abaixo para entender essa relação de uma forma simples e didática:
“O primeiro experimento científico da matemática foi numa arte: a música.”
A física na música
É a frequência do som que define uma nota musical. Essa frequência é uma repetição com referência de tempo. Por exemplo, imagine uma roda de bicicleta girando, se essa roda completa uma volta em 1 segundo, dizemos que a frequência da roda é “uma volta por segundo”, ou “um Hertz”. Hertz é o nome dado para representar a unidade de frequência, geralmente aparece abreviado como “Hz”. Se essa roda, por exemplo, completasse 10 voltas em 1 segundo, sua frequência seria 10 Hertz (10 Hz).
Bem, e o que isso tem a ver com a música? É que o som é uma onda e essa onda oscila com certa frequência. Se uma onda sonora completa uma oscilação em 1 segundo, sua frequência é de 1 Hz. Se ela completa 10 oscilações em 1 segundo, sua frequência é de 10 Hz. Para cada frequência há um som diferente (uma nota diferente). A nota Lá, por exemplo, corresponde a uma frequência de 440 Hz.
Quando uma frequência é multiplicada por 2, a nota permanece a mesma. Por exemplo, a nota Lá (440 Hz) multiplicada por 2 é 880 Hz, que continua sendo uma nota Lá, mas uma oitava acima. Se o objetivo é baixar uma oitava, bastaria dividir por 2. Ou seja, uma nota e sua respectiva oitava mantêm uma relação de ½.
Na Grécia Antiga, Pitágoras fez descobertas muito importantes para a matemática (e para a música). Por exemplo, ele descobriu que ao esticar uma corda, prendê-la nas suas extremidades e tocá-la, faz com que ela vibre. Até aí, bem simples, né?
Ele também decidiu dividir essa corda em duas partes e tocou cada extremidade novamente. O som produzido era exatamente o mesmo, só que mais agudo (pois era a mesma nota uma oitava acima):
Mas Pitágoras continuou seu experimento. Decidiu analisar como ficaria o som se a corda fosse dividida em 3 partes:
Um novo som surgiu, diferente do anterior. Pitágoras percebeu que não era a mesma nota uma oitava acima, mas uma nota diferente, que precisava receber outro nome. Apesar de ser diferente, o som combinava com o anterior, criando uma harmonia agradável ao ouvido.
Assim, ele continuou fazendo subdivisões e foi combinando os sons matematicamente criando escalas que, mais tarde, estimularam a criação de instrumentos musicais capazes de reproduzir essas escalas.
Muitos povos criaram suas próprias escalas musicais. O povo chinês, por exemplo, partiu da experiência de Pitágoras (utilizando cordas): eles tocaram a nota Dó em uma corda esticada e depois dividiram essa corda em 3 partes, como acabamos de mostrar. O resultado dessa divisão foi a nota Sol.
Ao observar que essas notas possuíam uma harmonia entre si, eles repetiram o procedimento a partir dessa nota Sol, dividindo novamente esse pedaço de corda em 3 partes, resultando na nota Ré, que deu origem à nota Lá, em seguida à nota Mi.
Ao repetir esse procedimento de dividir a corda em 3 partes, deu-se origem à nota Si, porém ela não soava muito bem quando tocada junto com a nota Dó (a primeira nota do experimento). As duas notas eram muito próximas uma da outra, causando certo desconforto sonoro. Por isso, os chineses terminaram suas divisões obtendo as notas Dó, Sol, Ré, Lá e Mi, deixando a nota Si de lado.
Foram essas notas que serviram de base para a música chinesa, formando uma escala de 5 notas (pentatônica). A escala pentatônica é agradável e consonante, representando muito bem a cultura oriental, que sempre foi pautada na harmonia e estabilidade.
Existem muitas outras explicações matemáticas para a construção da música, elas entram em assuntos mais avançados que necessitam um alto conhecimento matemático, como séries de Fourier e função Zeta de Riemann.
O que podemos entender é que música trabalha matematicamente, sendo resultado de uma organização numérica. E nosso cérebro é responsável por interpretar tudo isso. Nosso cérebro gosta de lógica, harmonia, gosta cálculos! Quanto mais você praticar, estudar e conhecer música, mais essa faculdade se desenvolve. =)
Muitos sabem que um dia Isaac Newton se sentou à sombra de uma macieira e uma maçã caiu na sua cabeça, iniciando a descoberta sobre a lei da gravidade. Só que a história deste gênio é muito mais comprida e interessante. Poucos sabem, por exemplo, que Isaac foi o último da classe, foi uma pessoa como nós: com defeitos, virtudes, desejos e características únicas. Não nasceu um gênio da ciência, mas como muito esforço, tornou-se um.
Isaac Newton é considerado o pai da Mecânica Clássica e, junto de Albert Einstein, é considerado uma das pessoas mais inteligentes que já existiram. Mas hoje vamos mostrar alguns fatos curiosos e interessantes sobre sua vida — não tão glamurosa assim.
1. Isaac Newton quase ficou cego durante seus experimentos
Antes dos estudos de Newton com a Óptica Física, acreditava-se que a cor era um mero efeito da pressão no nervo óptico. Newton, disposto a provar, ou derrubar tal teoria, enfiou várias vezes um palito pontiagudo abaixo do olho, tentando pressionar o nervo óptico para ver o efeito disso.
Não satisfeito, passou longos momentos olhando diretamente para o sol. Depois piscava os olhos para ver os efeitos das cores resultantes dessa “experiência”. O resultado foi uma cegueira temporária que só voltou ao normal após passar três dias em um quarto escuro.
2.Isaac Newton era pobre e órfão
Newton não teve a sorte de uma família estruturada, condições para estudar ou apoio dos pais. É que o pai dele morreu poucas semanas antes do seu nascimento e sua mãe era camponesa, não eram miseráveis, mas passaram longe de serem ricos. Quando o pequeno Newton tinha 3 anos, sua mãe se casou e foi embora com o novo marido, deixando o filho para trás, morando com os avós.
3. Isaac Newton era um jovem rebelde e preguiçoso
Para ir à escola, Isaac teve que se mudar e morar como pensionista em uma cidade longe da família. Não era um bom aluno, não se dedicava aos estudos e também não demonstrava interesse pela escola. Por vezes, se rebelava contra a mãe e o padrasto que o deixaram, chegou a ir até a casa deles e ameaçar atear fogo com ambos lá dentro.
Certo dia, Isaac se envolveu em uma briga e foi agredido. O jovem, abandonado pela mãe, se revoltou e, longe da família, resolveu que iria estudar e ser o melhor possível no máximo de coisas que ele pudesse (e revidou a surra no colega de turma). Não foi sorte, fé ou bênção, foi o hábito de estudar o máximo possível que o tornou um gênio.
“O que sabemos é uma gota; o que ignoramos é um oceano.”
Isaac Newton
4. Isaac Newton era lavrador com ficha na polícia
Por nunca ter estudado, a mãe de Isaac achava os estudos desnecessários, resolvendo tirar Isaac da escola quando já estava na adolescência. Nesta época, já viúva, chamou o filho para trabalhar na casa de campo.
Assim, foi obrigado a deixar a escola e começou a cuidar da casa, dos criados e dos animais. Nessa época ele já nutria uma grande paixão pelas exatas, e passava horas distraído, pensando em matemática, filosofia e outros assuntos que o interessavam. Isso o distraía mesmo! Certa vez seus animais fugiram, destruíram plantações e cercas dos agricultores vizinhos. Isaac foi fichado e multado na polícia. Sua mãe precisou desistir, Isaac não conseguia se concentrar em outra coisa senão nos estudos. Assim, voltou para a escola, terminou com louvor e conseguiu uma inscrição na Universidade de Cambridge.
5. Não foi uma maçã, foi trabalho mesmo
A maçã que caiu na cabeça de Newton é um exemplo ilustrativo do resultado de muito estudo sobre a gravidade. Não foi um lance de sorte. Após se formar, a peste bubônica acometeu a Inglaterra e a universidade onde Newton trabalhava. A universidade ficou fechada por cerca de 2 anos. Nesse intervalo de tempo, Newton se dedicou integralmente aos estudos e criou o Binômio de Newton, estudou as tangentes, Óptica e o Cálculo Diferencial e Integral. Com todas essas pesquisas em mente e anos a fio de estudo e concentração, pode formalizar a Teoria da Gravitação Universal.
“Construímos muros demais e pontes de menos.”
Isaac Newton
6. Isaac Newton, o distraído
Mesmo como professor, Newton era conhecido por seus colegas da Universidade de Cambridge como distraído. Era tão fascinado e focado em suas pesquisas que por vezes esquecia de comer ou dormir. Certa vez foi em direção ao salão de refeições, e passou direto por ele sem perceber, seu assistente o avisou da distração e ele voltou, passando novamente pelo local e indo em direção ao seu quarto. Novamente seu empregado o avisou que ele não tinha se alimentado e o mesmo respondeu “Claro que sim, afinal estou saindo do salão de refeições e estou me dirigindo ao quarto”.
Quem aqui queria ter conhecido Isaac Newton? Nós sim! Além das histórias que contamos, ele também se dedicou muito ao estudo da Alquimia, se aproximando do que hoje conhecemos por Química. Newton morreu em 20 de março de 1726, aos 84 anos, devido à causas naturais, já que sua idade era extremamente elevada para os padrões da época.
Existem auroras boreais de diversas cores, que dependem do tipo de gás ou molécula que participou dessa interação com os elétrons provenientes dos ventos solares.
Você já ouviu falar sobre a aurora boreal? Trata-se de um fenômeno óptico que colore os céus nas regiões polares. As auroras boreais são consequência da ação de partículas solares sobre a nossa magnetosfera, elas aparecem quando os ventos solares entram em contato com o campo magnético terrestre.
O campo magnético terrestre
Embora não possamos ver, o campo magnético terrestre está ao redor da Terra, funcionando para nós como uma “bolha de proteção”. Seu papel principal é bloquear o fluxo constante de radiação cósmica sobre a Terra, impedindo a entrada de partículas, carregadas e superaquecidas, que se chocam a 1,6 milhões km/h e são altamente nocivas, ou seja, o campo magnético é fundamental para a existência da vida terrestre.
O campo magnético nos protege contra partículas vindas do Sol
Os cientistas estimam que, numa profundidade entre 2.800 e 4.800 km abaixo da crosta, há uma camada de fluído, constituída principalmente por ferro. Com o movimento de rotação do planeta, este fluído também roda. Como a parte mais externa do globo é constituída por rochas, há um atrito entre as duas camadas, fazendo com que o fluído gire, formando espirais. As correntes circulares que se formam neste processo se comportam como os fios de um dínamo, gerando um campo magnético que consegue alcançar altitudes além da ionosfera – a camada superior da atmosfera.
É nessa movimentação que a Terra se transforma, todos os dias, em um imenso ímã. Graças a esse fenômeno, é possível utilizar bússolas magnéticas, por exemplo.
Aurora Boreal
O nome aurora boreal foi dado pelo astrônomo Galileu Galilei em homenagem à Aurora, deusa romana do amanhecer, e seu filho, deus grego do vento forte, Bóreas.
As auroras polares ocorrem somente nas áreas de elevada latitude em razão da força do campo magnético da Terra. O que acontece é que os ventos solares carregados de elétrons movem-se a cerca de 1,6 milhões de km/h e, quando chegam ao nosso planeta, acabam sendo facilmente guiados pela força magnética gerada pelo núcleo terrestre, seguindo para as áreas polares. Nesse momento, parte do vento solar é captada pela ionosfera, sendo conduzida e acelerada em uma espécie de “túnel magnético” que se forma, o que ocasiona a geração dos efeitos de luzes quando há uma interação desse vento solar eletricamente carregado com os gases atmosféricos.
As auroras boreais podem ter diversas cores e formatos
Existem auroras boreais de diversas cores, que dependem do tipo de gás ou molécula que participou dessa interação com os elétrons provenientes dos ventos solares. O oxigênio, a depender da altitude em que o fenômeno acontece, pode gerar auroras boreais verdes ou vermelhas; já o nitrogênio, também a depender da altitude, poderá gerar auroras azuis, púrpuras ou violetas. Muitas vezes, surgem várias cores ao mesmo tempo. Elas também podem ter vários formatos, tais como: pontos luminosos, faixas no sentido horizontal ou circular.
O fenômeno costuma ser um grande atrativo turístico, um evento natural procurado por milhares de pessoas todos os anos. O local do mundo mais visitado para apreciar o belíssimo espetáculo natural é a cidade de Lapônia, na Finlândia, geralmente nos meses de setembro e outubro e também em fevereiro e março, períodos do ano em que é mais provável a manifestação das auroras boreais.
Durante o processo de ensino, a alfabetização é marcada pelas descobertas onde, muitas vezes, o lúdico se faz presente. Neste cenário, podemos encontrar livros, desenhos, canais no YouTube e até jogos digitais que podem alavancar a aprendizagem e estimular a curiosidade das crianças sobre determinados assuntos.
Pensando no período de férias, listamos alguns livros e canais para que as crianças entrem num mundo mágico, aprendam e também se divirtam!
Uma divertida introdução ao universo da ciência, esse livro explora 30 descobertas e teorias fundamentais do pensamento científico. A obra aborda seis períodos – Grécia Antiga; A Revolução Científica; Era da Razão; Indústria Moderna; Ciência Moderna; Ciência Atual –, introduzidos por um glossário. Apresentados de forma clara e o objetiva, os textos são acompanhados de ilustrações que facilitam a compreensão. A obra aborda temas como a velocidade do som, a modificação genética, a teoria da relatividade, o “big bang” e muitos outros. O pequeno cientista poderá fazer experimentos interessantes, como combinar os elementos químicos da tabela periódica, construir um eletroímã, descobrir o centro de gravidade, ou extrair seu próprio DNA.
Isaac Newton viveu há trezentos anos e vai ser famoso até o fim dos tempos. Mas por quê? Muitos sabem que um dia ele se sentou à sombra de uma macieira e uma maçã caiu na sua cabeça, o que o levou a descobrir a lei da gravidade. Só que a história é mais comprida e muito, mas muito mais interessante. Poucos sabem, por exemplo, que Isaac foi o último da classe. Logo nas primeiras páginas, o autor relaciona algumas coisas que contará sobre o grande sábio: Por que ele enfiava coisas embaixo do globo ocular e quase ficou cego; como ele conseguiu decompor a luz; como ele inventou todo um novo sistema matemático; por que ele sempre queria guardar para si suas brilhantes descobertas; por que quase todo mundo o odiava; por que newtons demais matariam você; de quem era o nariz que ele esfregou na parede de uma igreja, e como ele conseguiu, acima de tudo, ser tão inteligente.
Um livro divertido que interage constantemente com o leitor e o envolve nas maravilhas da ciência. O principal objetivo é aproximar as crianças do conhecimento científico em uma viagem pela ciência e pela tecnologia. Trata-se de uma excursão pelo tempo, da atualidade até a antiguidade, por diferentes cantos da terra e pela imensidão do universo. Com este livro, as crianças vão conhecer muitas descobertas científicas que mudaram o rumo da história e também o contrário, os acontecimentos históricos que favoreceram descobrimentos e invenções.
Você sabia que cada átomo de seu corpo provavelmente fez parte de milhões de organismos, e de várias estrelas, antes de vir a ser você? Que uma pessoa de tamanho médio contém energia comparável à força de várias bombas de hidrogênio? Entre esses “comos” e “quens” das descobertas científicas, em Brevíssima história de quase tudo as crianças conhecem cientistas bizarros, teorias malucas que vigoraram por muito tempo e descobertas acidentais que mudaram os rumos da ciência. Grande contador de histórias, Bill Bryson um dia se deu conta de que conhecia muito pouco o planeta em que vivia. Essa constatação foi o empurrão necessário para que ele reunisse todas as suas perguntas sobre ciência e saísse em busca de respostas. Durante três anos, leu centenas de livros e revistas e entrevistou especialistas das mais diversas áreas. O resultado desse esforço para entender – e explicar – tudo sobre o mundo apareceu primeiro em Breve história de quase tudo, e agora ressurge adaptado para o público infantojuvenil. Ao contrário do texto didático tradicional, a prosa de Bill Bryson descarta a linguagem difícil, mas não abre mão da abordagem detalhada de cada tema. A preocupação do autor está em entender como os cientistas realizam suas descobertas e explicar para o leitor comum não só os mistérios da ciência mas também como, contra todas as possibilidades, a vida conseguiu prosperar nesse planeta maravilhoso que chamamos lar.
O livro traz curiosidades sobre o Universo, o reino animal, a literatura, as religiões, os esportes e muito mais. A diversidade de temas abordados o tornam um eficiente material de consulta, seja qual for o assunto. Em dez anos de vida, o grande almanaque de informações úteis e inúteis ficou 16 semanas em primeiro lugar na lista dos mais vendidos e foi o livro de não-ficção mais vendido em 1995. Vendeu cerca de 189.000 exemplares.
O Show da Luna é uma série brasileira sobre Luna, uma menina de 6 anos totalmente apaixonada por ciências! Para Luna, o planeta Terra é um laboratório gigante. O que a maioria de nós poderia ignorar, Luna observa e não sossega enquanto não descobrir “O que está acontecendo aqui?”
O canal do Manual do Mundo é o lugar para aprender de tudo: experiências, curiosidades científicas, dicas de sobrevivência, o que tem dentro das coisas, explicações impossíveis, viagens imperdíveis e muito mais!
Mais um canal de ciência para os pequenos! O Minuto da Terra ensina ciência e explica curiosidades, fenômenos e características da Terra para as crianças com animações. O conteúdo é rápido e didático.
Desenvolvido pelo Instituto Nacional de Ciência e Tecnologia dos Materiais em Nanotecnologia, do CNPq e o Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos, da Fapesp, o jogo online permite recursos interativos que auxiliam as crianças em diferentes níveis de alfabetização. O jogo busca associar sons a imagens e conforme o jogador acerta, aumenta o grau de dificuldade, completando sílabas ou palavras.
Viu só?! Esses são só alguns entre muitos materiais incríveis para ajudar no desenvolvimento da aprendizagem infantil e infantojuvenil! Escolha oferecer aos pequenos conteúdos interessantes e ajude a criar novos cientistas por aí. Boas férias! 😉
A termodinâmica é a área da física que busca explicar os mecanismos de transferência de energia térmica para que estes realizem algum tipo de trabalho.
A termodinâmica é um ramo da física que estuda as relações entre calor trocado e o trabalho realizado em um determinado processo físico, que envolve a presença de um corpo e/ou sistema e o meio exterior. É através das variações de temperatura, pressão e volume, que a física busca compreender o comportamento e as transformações que ocorrem na natureza.
O nome vem do grego onde therme significa calor e dynamis significa movimento. De uma forma mais simplificada, a termodinâmica é a área da física que busca explicar os mecanismos de transferência de energia térmica para que estes realizem algum tipo de trabalho.
Essa ciência teve um grande impulso durante a revolução industrial, quando o trabalho que era realizado por homens ou animais começou a ser substituído por máquinas. Os trabalhos dos cientistas da época levaram-nos a duas leis muito amplas e aplicáveis a qualquer sistema na natureza. Para entender as leis da termodinâmica, precisamos antes entender alguns conceitos básicos, como:
O que é calor?
O conceito de calor determina que ele é a energia térmica em trânsito. Ocorre em razão às diferenças de temperatura entre os corpos e sistemas envolvidos.
O que é energia?
Segundo o conceito usado na física, energia é a capacidade que um determinado corpo tem de realizar trabalho.
Primeira Lei da Termodinâmica
A primeira lei diz que a variação da energia interna de um sistema pode se expressar através da diferença entre o calor trocado com o meio externo e o trabalho realizado por ele durante uma determinada transformação. Nessa lei, são estudadas algumas transformações:
Transformação isobárica, em que a pressão é constante, podendo variar somente o volume e a temperatura.
Transformação isotérmica, a temperatura é constante e variam somente a pressão e o volume.
Transformação isocórica ou isovolumétrica, em que o volume é constante e variam somente a pressão e a temperatura.
Transformação adiabática, é a transformação gasosa em que, no entanto, o gás não troca calor com o meio externo. Seja por estar termicamente isolado, ou ainda porque o processo acontece de forma muito rápida, fazendo com que o calor trocado seja desprezível.
Segunda Lei da termodinâmica
A Segunda Lei da Termodinâmica foi enunciada pelo físico francês Sadi Carnot, ela faz restrições para as transformações que são realizadas pelas máquinas térmicas, como por exemplo, um motor de uma geladeira.
Segundo Carnot, o enunciado é:
“Para que um sistema realize conversões de calor em trabalho, ele deve realizar ciclos entre uma fonte quente e fria, isso de forma contínua. A cada ciclo é retirada uma quantidade de calor da fonte quente, que é parcialmente convertida em trabalho, e a quantidade de calor restante é rejeitada para a fonte fria.”
Aplicações da termodinâmica
Ciência dos materiais: é a ciência que estuda meios para obtenção de novos tipos de materiais, com propriedades químicas e físicas bem definidas. Podemos dizer que a termodinâmica é uma das bases da engenharia dos materiais, pois os processos de fabricação de novos materiais envolvem muito a transferência de calor e trabalho para as matérias primas.
Indústrias: os processos industriais transformam matéria-prima em novos produtos usando máquinas e energia. Na indústria de laticínios, a transferência de calor é usada na pasteurização e na fabricação de queijos e manteiga. Nas siderúrgicas, as altas temperaturas dos fornos causam a fusão de várias substâncias, permitindo a sua combinação e produzindo diferentes tipos de aço.
Fundição / Museu WEG – a matéria prima é transformada usando calor
Arquitetura: o desenho e a construção de habitações também devem levar em consideração os aspectos de troca de energia. É que nosso organismo só pode sobreviver em uma pequena faixa de temperatura onde nosso metabolismo é mais eficiente, por isso nos sentimos melhor quando a temperatura do meio ambiente está em torno dos 20°C.
Os projetos urbanos e residenciais levam isto em consideração, junto ao bom aproveitamento dos recursos naturais. Um exemplo é o uso da energia solar para substituir aquecedores de água que funcionam com energia elétrica ou com queima de combustível.
Você sabia que no calendário nacional existe uma semana dedicada à Ciência e Tecnologia?
E que o período foi criando pelo Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) para aproximar o tema da população, por meio de eventos envolvendo instituições de todo o País?
Fique ligado que a “Semana Nacional de Ciência e Tecnologia” é neste mês e acontece entre os dias 21 e 27 de outubro.
Várias instituições estão preparando ações educativas para comemorar a data e é claro que o Museu WEG de Ciência e Tecnologia não poderia ficar de fora, afinal o nosso acervo está totalmente direcionado a esta temática e nós adoramos compartilhar conhecimento com os nossos visitantes.
Para marcar a data vamos oferecer uma palestra sobre: “Geração de Energia através de Resíduos Sólidos Urbanos (RSU)”. O palestrante será o Engenheiro Alexandre dos Santos Fernandes, Gerente do Depto. Centro de Negócios de Energia da WEG.
A apresentação será direcionada para estudantes, colaboradores da WEG e todos que se interessam pelo tema! A participação é gratuita e a inscrição deve ser feita antecipadamente AQUI.
Não fique de fora, aproveite a Semana Nacional de Ciência e Tecnologia para atualizar conhecimentos e visitar o maior Museu de Ciência e Tecnologia do Sul do Brasil.
Palestra: Geração de Energia através de Resíduos Sólidos Urbanos (RSU)
Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.
A teoria de que nada pode viajar mais rápido do que a velocidade da luz no vácuo significa, basicamente, que nada pode ultrapassar os 299.792.458 metros por segundo ou arredondando, 300 mil km por segundo. Essa ideia foi proposta por Albert Einstein em sua Teoria da Relatividade, baseada em estudos anteriores de diversos cientistas para estabelecer que o limite de velocidade universalé o que a luz atinge quando se desloca pelo vazio do cosmos. Você sabe por quê?
Impossibilidade física
Isso nos leva à Teoria da Relatividade Especial de Albert Einstein, de 1905, que diz que a velocidade da luz é o que conecta o tempo e o espaço. Segundo o catedrático de Física Antonio Ruiz de Elvira, não é possível deslocar um objeto a uma velocidade superior à da luz porque, de forma simples e resumida, a única coisa capaz de mover uma partícula com massa é outra força que viaje a essa velocidade.
Zunindo pelo vácuo (BBC)
De acordo com Antonio, o objeto “empurrado” acabaria ganhando massa quando submetido a grandes velocidades. E, considerando que o ganho aumentaria bastante conforme o corpo se aproximasse da velocidade da luz, isso interferiria em sua capacidade de deslocamento. Sendo assim, nenhum corpo pode viajar mais depressa do que a força que o empurra.
Segundo o que prevê a Teoria da Relatividade, o aumento de massa aconteceria rapidamente conforme a velocidade do objeto se aproximasse à da luz. E, quanto mais próximo desse limite o corpo chegasse, considerando que o ganho de massa aumentaria infinitamente, seria necessária uma força — também — infinita para que o objeto se elevasse à velocidade da luz.
A famosa equação de Einstein tem uma parte “menos lembrada”, que descreve como a massa de um objeto muda quando há movimento envolvido: E = mc² (Energia é igual a massa vezes a velocidade da luz ao quadrado). Na verdade, a equação completa é E²=(mc²)²+(pc)². A parte final é a que descreve como a massa do objeto muda quando há movimento envolvido.
Teoria ameaçada
Em 2011, foi anunciada uma descoberta que ameaçou anular tudo o que sabemos sobre a velocidade da luz, a Teoria da Relatividade e a física moderna!
Isso aconteceu na Suíça, quando físicos europeus conduziram um experimento chamado Oscillation Project with Emulsion-tRacking Apparatus (Opera, na sigla em inglês), para estudar o fenômeno da oscilação de neutrinos. Diferentemente das partículas de luz, os neutrinos são partículas que possuem uma pequena quantidade de massa. Por isso, segundo a Teoria da Relatividade Especial de Einstein, deveriam viajar a uma velocidade menor que a da luz.
No entanto, naquele ano, o projeto chamou a atenção de toda a comunidade internacional quando anunciou a detecção de neutrinos se movimentando em uma velocidade superior à da luz, o que poderia revolucionar a Física moderna.
No entanto, tudo não passou de um mal entendido por causa de um cabo de um relógio digital em um laboratório, que estava mal conectado. Quando alguém percebeu e o conectou corretamente, tudo voltou à normalidade e ficou comprovado que os neutrinos estavam viajando a uma velocidade mais baixa que a da luz.
Toda a Física moderna foi questionada, portanto, por causa de um cabo de fibra ótica solto, que fez com que a passagem do tempo fosse registrada de maneira incorreta. Acredita?
Mas é assim que a ciência funciona e deve funcionar. Cientistas cometem erros e aprendem com eles. É preciso provas muito fortes para mudar os rumos da Física, e é a partir de testes, experimentações, erros e acertos que isso é possível — mesmo que leve séculos.