Categoria: Eletromagnetismo

Entrevista

Conheça o jaraguaense que trabalha com aceleradores de partículas na Suécia

O avanço da tecnologia exige ferramentas cada vez melhores, já falamos aqui sobre os tipos de aceleradores de partículas e…

21 de setembro de 2018
...

O avanço da tecnologia exige ferramentas cada vez melhores, já falamos aqui sobre os tipos de aceleradores de partículas e como existem profissionais em laboratórios gigantescos, descobrindo coisas sobre nossa saúde, existência e matéria. Algo comum para pesquisadores, porém um mistério para a população em geral. Mas não para o jaraguaense Rafael Baron, com quem tivemos uma conversa super inspiradora que você poderá ler logo abaixo.

O Rafael foi o primeiro funcionário dedicado ao projeto Sirius, laboratório de aceleradores de elétrons de Campinas, um dos mais sofisticados do planeta. Hoje, o engenheiro de Jaraguá do Sul trabalha na Suécia, no European Spallation Source ERIC (ESS), um dos maiores projetos de infraestrutura de ciência e tecnologia que está sendo construído atualmente. O projeto e a construção das instalações incluem o acelerador de prótons linear mais potente já construído.

Ficou curioso? Então embarque com a gente nessa viagem para dentro do ESS! Confira a entrevista exclusiva abaixo com o Rafael!

Museu WEG: Como você chegou até o European Spallation Source ERIC e como começou a trabalhar com aceleradores de partículas? É uma paixão antiga ou descobriu depois de alguma experiência?

Rafael: Essa é uma pergunta muito interessante, pois ela tem muita relação com minha vida e meus amigos de Jaraguá do Sul. Estudei praticamente a minha vida inteira no Colégio Jaraguá, e me lembro frequentemente de coisas que aprendi na escola, sejam estes ensinamentos para a vida ou ensinamentos técnicos. Sou muito grato a todos os meus colegas, professores, zeladores, guardas, o pessoal da cantina, etc. Todos foram muito importantes na formação.

“A minha relação inicial com a engenharia é estreitamente relacionada com a música.”

Eu sempre gostei muito de violão, então comecei a fazer um curso de música quando tinha aproximadamente 13 anos. Ao mesmo tempo, eu sempre gostei de vasculhar os equipamentos eletrônicos que tínhamos em casa. Até que um dia decidi fazer meu próprio amplificador de guitarra. E foi aí que tudo começou. Precisei visitar muitas vezes a biblioteca pública, a UNERJ, falar com diferentes pessoas, pesquisar muito sobre o assunto, e isso me fez aprender muito.

Além disso, uma pessoa muito importante nesta etapa foi um jaraguaense muito conhecido na região, o Sr. Zehnder. Eu lembro que, sempre que possível, eu visitava a loja de rádios e componentes eletrônicos aos sábados de manhã para conversar com seu Zehnder sobre amplificadores valvulados. Até que um dia ele me deu algumas válvulas velhas de rádio e eu iniciei o projeto de amplificador de guitarra valvulado.

Foi nessa época que aprendi muita coisa sobre sistemas eletrônicos. Quando não encontrava os componentes, transformadores e válvulas, eu ia até o lixão de Jaraguá (que ficava onde hoje é a Arena Jaraguá) para pegar componentes de rádios e televisões antigas. Aprendi muito com as pessoas que trabalhavam no lixão e pude também entender melhor as condições em que elas trabalhavam.

Depois de algum tempo, quando estava no terceiro ano do CEJA, eu estava muito em dúvida sobre qual área profissional seguir. Até que o pai de um amigo meu que trabalhava na WEG, Paulo Torri, me levou para uma visita na empresa. E foi aí que decidi realmente seguir a área de engenharia elétrica. Então comecei o curso na UDESC, em Joinville, mas ainda nos semestres iniciais passei no vestibular para a UNICAMP e decidi me mudar para Campinas (SP). Na UNICAMP, tive diversas oportunidades de trabalho e aprendizado, e foi no último ano de faculdade que eu consegui uma vaga para trabalhar com aceleradores, no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), no Laboratório Nacional de Luz Síncrotron (LNLS).

Após um ano trabalhando com uma bolsa de iniciação científica, fui contratado como o primeiro funcionário dedicado ao projeto Sirius, onde trabalhei numa equipe fantástica que desenvolve sistemas de diagnóstico para aceleradores. Portanto, o meu trabalho com aceleradores foi algo que eu descobri devido ao LNLS em Campinas, que me possibilitou conhecer pessoas de diversos aceleradores no mundo. Após algum tempo, recebi uma proposta de emprego do ESS, a qual aceitei.

Museu WEG: Você pode comentar como é o dia a dia no ESS?

Rafael: No ESS, trabalhamos diariamente com pessoas de diversas nacionalidades. O ESS é um projeto muito internacional, onde aproximadamente metade dos funcionários são suecos e a outra metade são de outras 49 nacionalidades. As minhas responsabilidades são relacionadas com uma atividade denominada Líder de Sistema de um tipo específico de sistema do acelerador, o Monitor de Posição de Feixe (BPM – Beam Position Monitor). A minha equipe trabalha com diferentes grupos do ESS, mas também temos parceiros em diferentes países europeus, como por exemplo, Alemanha, Espanha e Itália. Reuniões entre essas equipes são frequentes e diárias, onde decisões precisam ser tomadas rapidamente.

Os suecos têm um horário de trabalho que vai de 9 horas da manhã até as 17 horas, sendo muito raro ver pessoas no escritório após este horário. Porém, durante este período as atividades são intensas. É frequente precisar trabalhar com alguma pessoa e descobrir que ela está em uma licença de trabalho, seja para aprimoramento técnico (cursos) ou então em licença paternidade/maternidade. Na Suécia temos essa interessante política, onde os pais que tem um filho, podem tirar auxílio parental de até 480 dias, divididos entre o pai e a mãe, sendo o pai obrigado a tirar pelo menos 3 meses de licença. Desta maneira os pais dividem o tempo de cuidado da criança nos primeiros meses de vida.

Museu WEG: Quais os projetos mais legais que já participou ou que está participando?

Rafael: Eu trabalho com diversos projetos no ESS. Mas o mais interessante é o Monitor de Posição do Feixe, onde o sistema é responsável por monitorar a posição e velocidade do feixe de elétrons ao longo do acelerador de 600 metros. Neste sistema, o monitoramento do feixe de prótons, composto por milhares de pequenos pacotes de prótons viajando a uma velocidade próxima a velocidade da luz (aproximadamente 300.000 km/s), distanciados de 2.8 nanosegundos (um bilionésimo de segundo), e detectados a uma taxa de 100 milhões de vezes por segundo em 4 monitores simultâneos, sincronizados em intervalos de tempo da ordem de femtosegundos! É feito por 100 BPMs espalhados ao longo dos 600 metros de acelerador. O sistema é responsável por monitorar a posição do feixe de Prótons no acelerador e também por fazer a leitura e correção da energia do feixe de Prótons.

Imagem-RafaelFoto aérea do acelerador, que fica em um túnel linear no subsolo

– Para ver mais fotos do ESS, clique aqui.

– Se você tem curiosidade de saber como é o ESS por dentro (lembre-se que ele ainda está em construção), o Rafael sugere que você assista a esse vídeo.

Museu WEG: Para você, qual a importância de um laboratório de aceleradores de partículas para a população?

Rafael: Aceleradores de partículas estão diretamente e indiretamente presentes em nossas vidas, diariamente. Vou citar alguns exemplos: Se observarmos os componentes que temos dentro de nossos celulares, relógios, computadores e outros equipamentos eletrônicos, poderemos observar que eles são compostos por diversos dispositivos menores, baseados em materiais que apresentam uma característica denominada semicondutividade. Durante a fase de desenvolvimento e as etapas da produção destes materiais semicondutores, esses dispositivos passam por aceleradores de partículas dos mais variados tipos. Para desenvolver o semicondutor, aceleradores como o Sirius, são usados para observar a estrutura do material. Na produção dos semicondutores, aceleradores chamados de implantadores de íons são utilizados para tal função.

Outro exemplo: quando temos alguma pessoa de nossa família que está com câncer e precisa passar por uma etapa de radioterapia, mal sabem os pacientes que a fonte de radiação vem de um acelerador linear, utilizado para gerar e implantar a radiação na região afetada e assim matar as células cancerígenas. Outros tipos de tratamentos de câncer, utilizando aceleradores de prótons combinados com ressonância magnética nuclear, estão sendo atualmente utilizados em alguns hospitais e, talvez, em breve teremos aceleradores melhores para tratamento da doença. Quem sabe, teremos equipamentos brasileiros para esta finalidade. A engenharia brasileira é muito capaz de desenvolver estes equipamentos.

Outra aplicação presente diariamente em nossas vidas está relacionada ao desenvolvimento de remédios. Durante sua fase de projeto, alguns são submetidos à radiação gerada por aceleradores de partículas para visualização e engenharia de sua estrutura molecular.

Diversos outros exemplos são possíveis, sendo estes somente alguns poucos tipos de aceleradores e suas utilizações.

***

Incrível, não é mesmo? O Rafael começou a se interessar por engenharia quando decidiu criar seu próprio amplificador de guitarra e hoje trabalha em dos mais importantes projetos de infraestrutura de ciência e tecnologia do mundo!

Ele ainda ressaltou a importância de compartilhar a realidade do ESS entre as pessoas interessadas em aprender sobre a área. Saber com tantos detalhes sobre sua profissão, e como os aceleradores de partículas estão tão presentes em nossa vida, foi realmente inspirador.

Agradecemos ao Rafael Baron por compartilhar sua experiência e conhecimento com todos nós. Agora, sua história é motivo de orgulho e exemplo para todos os jaraguaenses.

premio-nobel

Quais as 10 últimas descobertas premiadas pelo Nobel de Física?

O Nobel de Física é entregue anualmente pela Academia Real das Ciências da Suécia aos cientistas dos vários campos da…

O Nobel de Física é entregue anualmente pela Academia Real das Ciências da Suécia aos cientistas dos vários campos da Física. É um dos cinco Prêmios Nobel estabelecidos por Alfred Nobel em 1895, premiando as contribuições excepcionais na Física. Conforme o desejo de Alfred Nobel, o prêmio é administrado pela Fundação Nobel e os premidos são escolhidos por um comitê de cinco membros, eleitos pela Academia Real das Ciências da Suécia.

O primeiro Nobel de Física foi entregue em 1901 ao alemão Wilhelm Röntgen. Cada premiado recebe uma medalha de ouro, um diploma e uma quantia em dinheiro, que é decidida pela Fundação Nobel previamente. A premiação acontece anualmente em Estocolmo no dia 10 de dezembro, o aniversário da morte de Alfred Nobel.

Mas quais foram as 10 últimas descobertas premiadas pelo Nobel de Física? Vamos descobrir a seguir:

2017
O prêmio foi para o time que descobriu as ondas gravitacionais, um fenômeno que Einstein previu, mas que jurava que jamais encontraríamos: Rainer Weiss, Barry Barish e Kip Thorne, todos dos Estados Unidos.

2016
David Thouless, Duncan Haldane e Michael Kosterlitz receberam o prêmio por seus trabalhos sobre os isolantes topológicos, materiais “exóticos” que em temperaturas mais altas, criam o quarto estado de matéria, o plasma. Mas em temperaturas extremamente baixas, desenvolvem supercondutividade e a superfluidez.

2015
Takaaki Kajita e Arthur B. McDonald, pela descoberta das oscilações dos neutrinos, que demonstram que estas enigmáticas partículas têm massa.
A descoberta de ambos os físicos “mudou nossa compreensão do funcionamento mais profundo da matéria e pode ser crucial para nossa visão do universo”, disse a Academia de Ciências da Suécia, que concede o prêmio anualmente.

2014
Por muitos anos, a indústria teve à sua disposição LEDs de cor vermelha e verde. No entanto, para obter luz LED branca, era necessário ter a componente azul. Nos anos 1990, os cientistas Isamu Akasaki e Hiroshi Amano e Shuji Nakamura conseguiram produzir essa luz, possibilitando o uso de LEDs para iluminação.

2013
François Englert e Peter Higgs receberam premiação por trabalhos sobre o bóson de Higgs, peça que faltava para legitimar o Modelo-Padrão da Física. Segundo esta teoria, formulada nos anos 1960, o universo é composto de 32 elementos fundamentais. O bóson de Higgs era o único desses elementos cuja existência fora inferida, mas nunca comprovada.

2012
Serge Haroche e David Wineland, por pesquisas em óptica quântica que possibilitaram a construção de relógios extremamente precisos e marcaram o primeiro passo para computadores extremamente rápidos.

2011
Os cientistas norte-americanos Saul Perlmutter, Adam Riess e Brian Schmidt receberam o Nobel de física de 2011 por pesquisas que mostraram como a expansão do Universo estava acelerada. Os estudos se basearam na observação da luz de supernovas – explosões que marcam o fim da vida de estrelas com muita massa.

2010
Andre Geim e Konstantin Novoselov receberam a premiação por experimentos inovadores com grafeno, um material mais forte que diamante, condutor de calor e superflexível. Um material revolucionário que transformou a eletrônica, em particular a construção de computadores e transistores.

2009
Charles Kao, Willard Boyle e George Smith, por pesquisas sobre a fibra óptica e os semicondutores, responsáveis por importantes avanços tecnológicos na telefonia, transporte de dados e fotografia.

2008
Este Prêmio Nobel de Física foi dividido entre dois cientistas. Yoichiro Nambu descobriu o mecanismo de simetria quebrada espontânea na física subatômica, e Makoto Kobayashi e Toshihide Maskawa descobriram a origem da simetria quebrada, que prevê a existência de pelo menos três famílias de quarks na natureza.

Quem será o grande ganhador deste ano? Façam as suas apostas!

Fontes: Jornal de Santa Catarina, G1, O Globo, Só Física e Galileu Galilei

blog3

Que tal uma aula eletrizante?

Você pode oferecer uma aula criativa e diferente para os seus alunos. Aqui no Museu WEG, é possível agendar uma aula sobre fenômenos eletromagnéticos e até sobre o motor elétrico, para mostrar como a teoria funciona na prática.

Você pode oferecer uma aula criativa e diferente para os seus alunos. Aqui no Museu WEG, é possível agendar uma aula sobre fenômenos eletromagnéticos e até sobre o motor elétrico, para mostrar como a teoria funciona na prática.

Nada melhor do que mostrar através de experimentos e da história da Física, eletricidade e do eletromagnetismo, onde aplicamos e como são gerados esses dois fenômenos, assim como aplicações destes fenômenos no nosso dia a dia.

Aqui no Museu WEG, as ações educativas são perfeitas para as crianças e adolescentes dividirem espaço, trabalharem em grupo e expandirem seu conhecimento sobre Ciência e Tecnologia.

Você pode usar nossas ações educativas ou desenvolver a sua própria de acordo com os temas que julgar mais adequados à sua turma de alunos. Caso não seja possível visitar antecipadamente, desfrute de toda a interatividade do museu fazendo o Tour Virtual e entre em contato conosco para tirar dúvidas e buscar mais informações.

Conheça aqui todas as ações educativas do Museu WEG

Aprenda com o Museu

Caso não seja possível fazer a visita in-loco, você também pode desfrutar de toda interatividade do museu no nosso site. Seja no tour virtual, aqui no blog, com o jogo da memória, quiz ou na aba “Aprenda com o Museu”, onde falamos sobre eletricidade, magnetismo, eletromagnetismo, motores, automação, geradores e transformadores, com o Museu WEG você sempre aprende se divertindo e brincando.

Programe-se e faça uma aula diferente! Entre em contato conosco e faça o seu agendamento clicando aqui.

blog2

Quem foi Hans Christian Oersted?

ísico, químico e eterno estudioso, foi ele quem abriu caminho para o desenvolvimento do eletromagnetismo. Nascido em 1777, na Dinamarca, Hans Oersted desenvolveu desde cedo o interesse pela ciência. Sob influências do pai farmacêutico, formou-se em Farmácia no ano de 1797 e tornou-se doutor em Filosofia em 1799.

Físico, químico e eterno estudioso, foi ele quem abriu caminho para o desenvolvimento do eletromagnetismo. Nascido em 1777, na Dinamarca, Hans Oersted desenvolveu desde cedo o interesse pela ciência. Sob influências do pai farmacêutico, formou-se em Farmácia no ano de 1797 e tornou-se doutor em Filosofia em 1799.

Em uma viagem pela Europa, conheceu Johann Wilhelm Ritter, um físico que acreditava na existência de uma ligação entre a eletricidade e magnetismo. A partir daí, Oesrted começou sua incansável busca pela relação entre os dois fenômenos. Isso porque, naquela época, a eles eram encarados como fenômenos independentes e totalmente excludentes.

A experiência de Oersted

Foi em 1820, através do “Experimento de Oersted”, que o cientista comprovou a relação entre a eletricidade e o magnetismo.

Oersted posicionou uma bússola próximo a um circuito elétrico simples e percebeu que a agulha imantada da bússola sofria deflexões quando existia corrente elétrica no circuito. Se a corrente era interrompida, a agulha voltava à sua posição normal, apontando sempre para o norte geográfico.

A única explicação possível para a deflexão sofrida pela agulha imantada era a presença de um campo magnético que concorria com o campo magnético terrestre. Assim, Oersted concluiu que cargas elétricas em movimento geravam campo magnético.

Esse experimento possibilitou a criação e fabricação do galvanômetro, instrumento composto por uma agulha imantada e uma bobina que era capaz de indicar a presença de corrente elétrica em um circuito.

Ao utilizar o aparelho galvânico, muito mais poderoso, percebeu o mesmo fenômeno com muito mais clareza. Após obter o mesmo resultado diversas vezes, surge uma nova ciência nascida da união entre a eletricidade e o magnetismo: o eletromagnetismo. E estabeleceu-se a lei fundamental do eletromagnetismo.

Leia mais sobre o Eletromagnetismo aqui.

Depois de ter realizado estudos de química, física e ter comprovado o eletromagnetismo, Hans fundou na Dinamarca uma Sociedade para o Desenvolvimento do Estudo da Ciência, foi nomeado Conselheiro do Estado e fundou a Escola Politécnica de Copenhagen. Oersted faleceu em Copenhagen em 9 de março de 1851.

Fonte: Brasil Escola, Mundo Educação e UFJF

historia-telefone

A história do telefone que você precisa conhecer

“Sr Watson, venha aqui. Quero ver você”. Esta foi a primeira frase dita através de um telefone, há exatos 142…

“Sr Watson, venha aqui. Quero ver você”. Esta foi a primeira frase dita através de um telefone, há exatos 142 anos. Quem fez a ligação – de um cômodo a outro – foi Graham Bell, um professor escocês que morava nos Estados Unidos e o inventor do aparelho. Do outro lado da linha estava Thomas Watson, seu auxiliar e que participou de todo o processo de construção do primeiro protótipo.

historia-telefone

De lá para cá, nem precisa dizer o quanto o telefone mudou e a vida de todos nós também a partir dele. A invenção de Graham Bell, patenteada em 10 de março de 1876, está entre as principais ações no terreno da ciência e da tecnologia do século XIX – considerado o século da Segunda Revolução Industrial e das pesquisas em torno dos fenômenos relacionados com a eletricidade e o eletromagnetismo.

Também é importante referenciar o italiano Antonio Meucci, que foi responsável pela criação do telégrafo e do princípio que daria origem ao telefone. Inclusive, em 2002 os Estados Unidos reconheceram Meucci como o inventor oficial do telefone.

Quando o telefone chegou no Brasil?
Foi um ano depois, em 1877, quando foram instaladas as primeiras linhas telefônicas do país. Essas linhas ligavam o Palácio da Quinta da Boa Vista à residência dos ministros do imperador.

Curiosamente, o primeiro usuário do telefone foi o próprio imperador D. Pedro II. Interessado em assuntos de tecnologia, ele havia participado da Exposição Centenária, que comemorou os 100 anos de independência dos Estados Unidos. Na ocasião, Graham Bell apresentou sua invenção ao público e fez uma demonstração.

historia-telefone

E as centrais telefônicas?
O Rio de Janeiro foi a segunda cidade do mundo a ter uma linha telefônica, depois de Chicago, nos Estados Unidos. Por conta da rápida popularidade do telefone, houve a necessidade de implantar as centrais telefônicas para atender o crescente número de linhas.

As centrais eram operadas por telefonistas que se conectavam manualmente aos telefones dos usuários e assim eram feitas as ligações. A série “As Telefonistas”, do Netflix, mostra como funcionavam as primeiras centrais. Ela se passa na Espanha dos anos 1920, mas serve para demonstrar como era essa realidade que literalmente ficou no passado.

Encurtando distâncias
O telefone foi uma das grandes invenções do século XX. Até parece que o mundo ficou menor com ele. Afinal, na prática o telefone encurtou distâncias, já que quase tudo passou a ser resolvido ao discar números no aparelho.

Passados 142 anos, seu formato evoluiu e ele se tornou móvel, firmando-se como uma peça imprescindível na vida de todos, a ponto de em alguns países, como o Brasil, o número de aparelhos de celular superar o de habitantes.

ampère-1

Por que comemoramos aniversário de André-Marie Ampère?

Certamente você lembra do ampere, a unidade de medida da corrente elétrica ensinada nas aulas de física. Pois então! Esse…

Certamente você lembra do ampere, a unidade de medida da corrente elétrica ensinada nas aulas de física. Pois então! Esse nome é uma homenagem ao físico e matemático francês André-Marie Ampère. Aproveitamos o dia de nascimento dele para registrar sua história e sua importante contribuição à ciência em praticamente todos os ramos do conhecimento.

André-Marie Ampère nasceu em 1775 na cidade de Lyon, filho de um intelectual e uma comerciante. Autodidata, antes mesmo de ler e escrever, resolvia problemas aritméticos, demonstrando aptidão excepcional para o cálculo. Aos 12 anos ele já dominava os principais teoremas de álgebra e geometria.

Seu pai foi o principal incentivador de seus estudos. Criou uma biblioteca para o filho, que aos 11 anos Ampère havia lido completamente, e o ensinou o latim, idioma que aprendeu em poucas semanas e o permitiu leituras de importantes obras escritas na língua.

Duas grandes perdas o aproximaram ainda mais da vida científica. Primeiro seu pai, que foi decapitado durante a Revolução Francesa, quando Ampère estava com 18 anos. A segunda foi de sua esposa, Julie Carron, com quem se casou em 1799 e teve seu filho, Jean Jacques Ampère. Julie faleceu em 1803.

Poucos meses depois da perda da esposa, Ampère foi convidado a lecionar matemática no Liceu de Lyon. Antes disso, em 1800, havia publicado sua primeira obra, “Considerações sobre a Teoria Matemática do Jogo”, que o tornou conhecido no meio científico. Em 1814, ele foi eleito para o Institut de France, elaborando vários estudos sobre matemática e física.

As bases do Eletromagnetismo

A obra que imortalizou André-Marie Ampère foi publicada em 1826, intitulada “Teoria dos Fenômenos Eletrodinâmicos”. Com a descoberta de que dois fios condutores atravessados por uma corrente elétrica exercem ações recíprocas um sobre o outro, o físico estabelecia as bases científicas do eletromagnetismo.

Foi ele também o criador do primeiro eletroímã. Dispositivo fundamental para a invenção de vários aparelhos, como o telefone, o microfone, o alto-falante, o telégrafo etc. André-Marie Ampère faleceu em Marselha, França, no dia 10 de junho de 1836.

museu-weg-guerra-das-correntes

A batalha das correntes: um fato histórico digno de filme

Se houvesse um duelo entre grandes nomes da ciência, como Thomas Edison e Nikola Tesla, para quem você iria torcer?…

Se houvesse um duelo entre grandes nomes da ciência, como Thomas Edison e Nikola Tesla, para quem você iria torcer? Apesar da batalha ser figurada, a luta entre os dois cientistas existiu, mas de uma maneira mais sutil. O primeiro defendia o sistema de corrente contínua, enquanto o segundo tentava provar a eficiência da corrente alternada, usada até hoje.
(mais…)

MOTOR-WEG

A incrível transformação dos motores no seu dia a dia

O nosso dia a dia está cercado de equipamentos movidos por energia. Do carregador do seu smartphone à máquina de…

O nosso dia a dia está cercado de equipamentos movidos por energia. Do carregador do seu smartphone à máquina de lavar. Mas, antes de chegarem até você, esses inventos sofreram muitas transformações, assim como o motor elétrico, que contaremos hoje. (mais…)

BLOG 19 04

Novas ações educativas no museu

Para continuar estimulando o conhecimento em torno de ciência e tecnologia, o Museu WEG ampliou o seu programa educacional com duas novas ações educativas.

Para continuar estimulando o conhecimento em torno de ciência e tecnologia, o Museu WEG ampliou o seu programa educacional com duas novas ações educativas, “Também sou cientista” e “Gerando e transformando energia”, direcionadas para alunos do 6º ao 9º do Ensino Fundamental e Médio. Ao todo, são sete opções de ações educativas para professores e alunos participarem.

Cada ação educativa é composta por uma temática, com conteúdo e ações específicas sobre o tema. Com uma dinâmica divertida, os alunos aprendem conceitos técnicos e práticos sobre ciência, integrando o assunto abordado na sala de aula.

Novidades

O programa “Também sou cientista” permite que os estudantes conheçam as histórias e descobertas dos cientistas, reconstruam suas experiências e aprendam a identificar onde essas técnicas são aplicadas no dia a dia.

Com a ação “Gerando e transformando energia” os estudantes podem aprender sobre os geradores e o sistema de funcionamento e claro, as diversas maneiras que promovem a transformação e a geração de energia.

Nas duas ações educativas são aplicadas as técnicas de cognição, metacognição, cooperação, sócio-afetiva e aprendizagem para a vida. As atividades possuem duas horas de duração.

Com o programa educacional, as ações se transformam em ferramentas de comunicação próxima entre escola e Museu WEG, transformando o espaço em um sistema de educação continuada para alunos e professores.

Como participar

Todas as ações educativas são gratuitas e incluem material de atividade e monitoria da equipe do museu. Para participar, o professor deve escolher a ação educativa e agendar um horário aqui. www.museuweg.net/contato/agendamento

Ainda não conhece o Museu WEG? Faça um tour virtual e prepare uma atividade educacional com seus alunos aqui.