Tag: ciência

pai-do-eletroima

William Sturgeon: o pai do eletroímã

Hoje, em 22 de maio de 1783, nascia no Reino Unido o físico Willian Sturgeon. Ele foi o responsável por…

Hoje, em 22 de maio de 1783, nascia no Reino Unido o físico Willian Sturgeon. Ele foi o responsável por uma das invenções que alterou o curso da história: o eletroímã. A partir dele, outros dispositivos centrais da tecnologia moderna puderam surgir, como o telégrafo e o motor elétrico.

A vida antes e depois da física

Willian Sturgeon nasceu em Whittington, em Lancashire, um dos condados da Inglaterra, onde foi aprendiz de sapateiro. Ele se juntou ao exército em 1802 e se dedicou ao ensino de matemática e física.

Autodidata em fenômenos elétricos e ciências naturais, passou muito tempo lecionando e conduzindo experimentos elétricos. Em 1824, tornou-se professor de Ciências e Filosofia no Royal Military College, em Addiscombe, Surrey. Foi no ano seguinte que Sturgeon apresentou seu primeiro eletroímã.

Como se deu a invenção?

Sturgeon curvou uma barra de ferro comum, criando o formato de uma ferradura. Depois, a revestiu com verniz e enrolou com fio de cobre desencapado. Quando provocou a passagem de corrente gerada por uma pilha voltaica pelo fio, a ferradura se tornou um imã capaz de sustentar o peso de quase 4 quilos, o que representava muito para a época. Surgia, assim, o eletroímã.

pai-do-eletroima-2

Outros inventos e estudos

Em 1832 o físico também inventou o comutador, parte integrante dos motores elétricos mais modernos. Em 1836, ano em que fundou a revista mensal Annals of Electricity, Willian Sturgeon inventou o primeiro galvanômetro de bobina suspenso, um dispositivo para medir a corrente.

Ele também melhorou a bateria voltaica e trabalhou na teoria da termoeletricidade. De mais de 500 observações de pipa, estabeleceu que, em climas serenos, a atmosfera é invariavelmente carregada positivamente em relação à Terra, tornando-se mais positiva com o aumento da altitude.

Aplicações práticas

O eletroímã é, basicamente, um imã obtido por meio de corrente elétrica, portanto um imã não natural. É o que faz, por exemplo, o motor elétrico funcionar, já que sua base é composta pela repulsão entre dois ímãs, um natural e o eletroímã.

O eletroímã também é usado em campainhas, telefones, aparelhos de telégrafo, relés, alto-falantes, relógios elétricos, ventiladores, geladeiras, lavadoras, batedeiras, geradores, chaves automáticas, disjuntores. Guindastes com eletroímãs são usados para carregar e descarregar ferro, e para separar o ferro e o aço de outros materiais. O eletroímã é parte importante de uma infinidade de outros aparelhos, dispositivos e máquinas.

Conheça agora outras pesquisas e inventos que, juntos, ajudaram a dar origem ao motor elétrico.

Albert Einstein: detalhes da vida do mais célebre cientista do século XX

Aos três anos ele não sabia falar, aos seis aprendeu a tocar violino, aos 17 anos renunciou a sua cidadania…

Aos três anos ele não sabia falar, aos seis aprendeu a tocar violino, aos 17 anos renunciou a sua cidadania alemã e ficou sem pátria por alguns anos. Lutou pela paz mundial e pela justiça social. Estas são algumas particularidades da história de vida de um dos maiores gênios da humanidade. Sim, estamos falando de Albert Einstein!

O físico e matemático alemão desenvolveu a Teoria da Relatividade, fruto de uma exaustiva pesquisa de uma década. A nova e radical visão das interações entre o espaço, o tempo, a matéria, a energia e a gravidade é considerada a mais importante contribuição cientifica do século XX.

Isso porque ela fez cair por terra a Teoria de Isaac Newton, de 200 anos antes, de que espaço e tempo eram conceitos independentes. Até então, acreditava-se que o tempo fluía de modo equitativo e o espaço permanecia inamovível. Einstein comprovou por seus estudos que tempo e espaço são relativos. Ele estabeleceu a relação entre massa e energia e deduziu a famosa equação: E = mc².

Vida pessoal
Albert Einstein nasceu em 14 de março de 1879, em Ulm, na Alemanha. Com um ano de idade, mudou-se com sua família, de classe média judaica, para Munique, onde estudou o primário em uma escola católica. Seu pai, Hermann Einstein, foi um vendedor e engenheiro, e abriu uma empresa que fabricava equipamentos elétricos.

Com dificuldades nos negócios, em 1894 a família se mudou para a Itália, mas Einstein permaneceu em Munique para terminar os estudos. Dos 9 aos 15 anos, estudou na Luitpold Gymnasium, onde se interessou por geometria e álgebra, destacando-se rapidamente. No entanto, não se adaptava à rígida educação prussiana, não frequentava as aulas com regularidade, e acabou sendo expulso da escola.

Entrou para a Escola Politécnica Federal da Suíça, onde, em 1900, conclui a graduação em Física. Em 1901 escreveu seu primeiro artigo científico “A Investigação do Estado do Éter em Campo Magnético”. Em fevereiro deste mesmo ano recebeu a naturalização suíça. Em 6 de janeiro de 1903 casou-se com Mileva Maric, uma estudante de Física da Sérvia, com quem teve três filhos.
Anos mais tarde, em 1919, ele se separou de Mileva e casou com uma prima, Elsa Löwenthal.

Vida profissional

Albert Einstein teve uma carreira notável, reconhecida principalmente a partir de 1905, quando formulou a teoria da relatividade, que conduziria à libertação da energia atômica. Neste mesmo ano, publicou, na Revista Anais de Física, quatro artigos que se tornariam fundamentais para a Física Moderna. Um deles lhe renderia o Nobel de Física.

Conheça mais fatos marcantes na vida do cientista:

1909: tornou-se professor na Universidade de Zurique
1910: começou a lecionar na Universidade de Praga
1912: ocupou a cadeira de Física, da Escola Politécnica Federal da Suíça
1913: nomeado professor para a Universidade de Berlim e diretor do Instituto Kaiser Wilhelm de Física. Torna-se membro da Academia de Ciências da Prússia
1915: apresentou na Academia de Ciências da Prússia a Teoria da Relatividade Geral.
1921: recebeu o Prêmio Nobel de Física por suas descobertas sobre a lei dos efeitos fotoelétricos
1933: renunciou seus cargos em Berlim e ingressou no Instituto de Estudos Avançados de Princeton, nos Estados Unidos.

Albert Einstein seguiu sua carreira acadêmica em 1945. Além da ciência, também se dedicou a assuntos políticos. Humanista convicto, lutou pela paz mundial e pela justiça social e a liberdade. Em 1946, apoiou projetos de formação de um governo mundial e a troca de segredos entre as grandes potências atômicas, almejando a paz mundial.

Faleceu em Princeton, Estados Unidos, no dia 18 de abril de 1955, aos 76 anos. Ele era cidadão americano desde 1940.

E aí uma vida de muitas conquistas e descobertas, não é mesmo?

quinto-estado-da-matéria-1

Físico catarinense participa da pesquisa da descoberta do quinto estado da matéria

O físico catarinense Germano Woehl Jr. participou de uma descoberta fundamental para a comunidade científica e para o mundo: a…

O físico catarinense Germano Woehl Jr. participou de uma descoberta fundamental para a comunidade científica e para o mundo: a de que há um quinto estado da matéria, além do sólido, líquido, gasoso e plasma. O Museu WEG não poderia deixar registrar o feito, que ganha uma conotação ainda mais especial, já que Woehl, nascido em Itaiópolis, é também morador de Jaraguá do Sul, nossa cidade-sede.

Divulgada recentemente, a descoberta foi publicada em primeira mão pela Revista Científica da Sociedade Americana de Física, que você pode conferir aqui. O novo estado físico da matéria é chamado de Polarons de Rydberg. Ele é criado em temperaturas extremamente baixas, quando um elétron orbita seu núcleo a uma distância tão grande que outros átomos cabem dessa órbita. A fraca ligação entre essas partículas forma os Polarons de Rydberg.

Ao criar átomos dentro de átomos, a nova pesquisa marca uma época empolgante para a física quântica. Na prática, a descoberta do quinto estado da matéria representará uma evolução tecnológica sem precedentes, por exemplo, com a criação de computadores quânticos. São equipamentos com uma capacidade de processamento tamanha que conseguem quebrar todas as senhas de computadores do mundo.

quinto-estado-da-matéria-1

Registro do experimento na Rice University, onde foi observado o novo estado da matéria

Germano nos concedeu o privilégio de uma entrevista exclusiva, que você confere a seguir:

Em que contexto se deu a descoberta e como aconteceu sua participação?

Foi durante meu estágio de pós-doutorado nos Estados Unidos, na Rice University, Houston, Texas. Eu ganhei uma bolsa do CNPq, do Programa de Pós-Doutorado no Exterior, para realizar este estágio nos laboratórios do professor Thomas Killian, que foi orientado por dois ganhadores do Prêmio Nobel da área, um deles no doutorado no MIT (Massachusetts Institute of Technology – Instituto de Tecnologia de Massachusetts) e outro no pós-doutorado na Universidade do Colorado.

É difícil conseguir aceitação para fazer pós-doutorado em um grupo de pesquisa forte como este do prof. Killian. O que me favoreceu foi o fato de eu ter feito meu doutorado nesta área na UNICAMP e ter feito o mestrado na USP, Instituto de Física de São Carlos (IFSC), no grupo que tem um professor famoso nesta área, reconhecido internacionalmente. Então o prof. Killian telefonou para estes professores, da UNICAMP e da USP e eles deram boas referências sobre mim.
Na realização do meu estágio, o prof. Killian soube me encaixar muito bem na equipe. Ele percebeu que minha habilidade com a tecnologia de lasers e óptica era boa.

Então pediu para que eu desenvolvesse soluções para desacelerar e aprisionar os átomos com feixe de lasers para produzir o material quântico com um número maior de átomos e uma geometria especial com uma variação dinâmica de forma e intensidade do feixe de laser.

Tudo tinha que ser controlado por computador e este controle não poderia exigir muita memória, porque todo o experimento é automatizado e já estava no limite da capacidade do computador. Ele apontou os caminhos e desenvolvi com sucesso o sistema.

É importante destacar que estes conhecimentos sobre lasers e óptica foram adquiridos integralmente nas universidades brasileiras, na USP e na UNICAMP. Minha formação de pesquisador na área de física, com especialidade em tecnologia de lasers, é 100% brasileira.

Estavam trabalhando há quanto tempo na pesquisa?

Meu pós-doutorado na Rice University foi de quase dois anos. O prof. Killian tem três experimentos completos para desacelerar átomos e obter o material quântico, cujas propriedades estão sendo pesquisadas. Eles pesquisam na fronteira do conhecimento humano e procuram desvendar mais segredos do comportamento dos átomos.

quinto-estado-da-matéria-1

Germano Woehl Jr no laboratório de pesquisa do Instituto de Estudos Avançados, Departamento de Ciência e Tecnologia Aeroespacial da FAB, em São José dos Campos (SP)

Na sua opinião, qual impacto desta descoberta para a ciência e para o mundo?

O impacto de novas descoberta da ciência demoram um pouco para chegar em nossas casas. Einstein já era muito famoso quando publicou em 1919 seus estudos teóricos sobre as duas formas do átomo perder energia: uma delas é o elétron decair espontaneamente para um nível de menor energia emitindo um fóton (luz) e outra forma é um fóton estimular o decaimento deste elétron e o átomo emitir outro fóton com características idênticas (processo chamado de emissão estimulada).

Então, os jornalistas queriam explicar para a população a importância desta descoberta (teórica) de Einstein e perguntavam para os físicos qual a aplicação disso no dia a dia das pessoas. Até os anos 60, quando o Laser foi inventado (cujo princípio é a emissão estimulada dos átomos), durante 40 anos, os físicos respondiam aos jornalistas: nenhuma. Analisem o impacto das aplicações dos Lasers, dos LEDs, que funcionam conforme a teoria prevista por Einstein em 1919.

Foi justamente o laser que possibilitou parar os átomos e levá-los a temperaturas próximas do zero absoluto (-273,15 °C ou zero Kelvin). Nesta temperatura, a distribuição dos átomos colapsa abruptamente, ou seja, os átomos se condensam e passam a ocupar menos espaço.

Nestas condições, a matéria exibe um comportamento regido pelas leis da mecânica quântica e obtemos então o chamado “material quântico”, um tipo de material com propriedades mágicas, que o homem nunca sonhou em colocar as mãos.

Foi Einstein que previu esta condensação abrupta em temperaturas próximas do zero absoluto, denominada de condensação de Bose-Einstein.

Este fenômeno da condensação de Bose-Einstein só foi possível observar em laboratório em 1997, nos Estados Unidos. Os físicos que conseguiram isso, da Universidade do Colorado e do MIT, ganharam o Prêmio Nobel três anos mais tarde, em 2000. Até agora, somente 45 laboratórios do mundo conseguiram observar o fenômeno. O IFSC da USP de São Carlos conseguiu em 2004.

quinto-estado-da-matéria-1

Detalhe da câmara de ultra-alto vácuo, onde os átomos são desacelerados com feixe de laser até ficarem na temperatura próxima de -273,15 °C

Nos laboratórios do prof. Killian, na Rice University, eles estão um passo à frente, já dominam bem a técnica de obter o material quântico e estão pesquisando suas propriedades.

Como é um assunto na fronteira do conhecimento, estas pesquisas experimentais precisam de suporte dos físicos teóricos. Porque não tem teoria ainda. Por isso, nesta descoberta do novo estado da matéria, foi muito importante o trabalho teórico dos físicos da Universidade de Harvard e da Universidade de Tecnologia de Viena, Áustria, onde foi utilizado um supercomputador nos cálculos numéricos para direcionar o experimento.

Conforme as notas à imprensa das Universidades de Harvard e Rice, essa descoberta pode abrir caminho para entender melhor as ligações químicas e a inovação de novos materiais, com os supercondutores a temperatura ambiente, que conduzem eletricidade sem perdas.

Obter estes materiais é o grande sonho da humanidade. Os melhores condutores de eletricidade, metais de cobre e alumínio, perdem por calor parte da energia conduzida. Estas perdas são consideráveis. Por exemplo, cerca de 30% da energia gerada por Itaipu é perdida na transmissão para os centros consumidores no Sudeste. Com materiais supercondutores não teria esta perda.

A história do telefone que você precisa conhecer

“Sr Watson, venha aqui. Quero ver você”. Esta foi a primeira frase dita através de um telefone, há exatos 142…

“Sr Watson, venha aqui. Quero ver você”. Esta foi a primeira frase dita através de um telefone, há exatos 142 anos. Quem fez a ligação – de um cômodo a outro – foi Graham Bell, um professor escocês que morava nos Estados Unidos e o inventor do aparelho. Do outro lado da linha estava Thomas Watson, seu auxiliar e que participou de todo o processo de construção do primeiro protótipo.

De lá para cá, nem precisa dizer o quanto o telefone mudou e a vida de todos nós também a partir dele. A invenção de Graham Bell, patenteada em 10 de março de 1876, está entre as principais ações no terreno da ciência e da tecnologia do século XIX – considerado o século da Segunda Revolução Industrial e das pesquisas em torno dos fenômenos relacionados com a eletricidade e o eletromagnetismo.

Também é importante referenciar o italiano Antonio Meucci, que foi responsável pela criação do telégrafo e do princípio que daria origem ao telefone. Inclusive, em 2002 os Estados Unidos reconheceram Meucci como o inventor oficial do telefone.

Quando o telefone chegou no Brasil?
Foi um ano depois, em 1877, quando foram instaladas as primeiras linhas telefônicas do país. Essas linhas ligavam o Palácio da Quinta da Boa Vista à residência dos ministros do imperador.

Curiosamente, o primeiro usuário do telefone foi o próprio imperador D. Pedro II. Interessado em assuntos de tecnologia, ele havia participado da Exposição Centenária, que comemorou os 100 anos de independência dos Estados Unidos. Na ocasião, Graham Bell apresentou sua invenção ao público e fez uma demonstração.

E as centrais telefônicas?
O Rio de Janeiro foi a segunda cidade do mundo a ter uma linha telefônica, depois de Chicago, nos Estados Unidos. Por conta da rápida popularidade do telefone, houve a necessidade de implantar as centrais telefônicas para atender o crescente número de linhas.

As centrais eram operadas por telefonistas que se conectavam manualmente aos telefones dos usuários e assim eram feitas as ligações. A série “As Telefonistas”, do Netflix, mostra como funcionavam as primeiras centrais. Ela se passa na Espanha dos anos 1920, mas serve para demonstrar como era essa realidade que literalmente ficou no passado.

Encurtando distâncias
O telefone foi uma das grandes invenções do século XX. Até parece que o mundo ficou menor com ele. Afinal, na prática o telefone encurtou distâncias, já que quase tudo passou a ser resolvido ao discar números no aparelho.

Passados 142 anos, seu formato evoluiu e ele se tornou móvel, firmando-se como uma peça imprescindível na vida de todos, a ponto de em alguns países, como o Brasil, o número de aparelhos de celular superar o de habitantes.

Mulheres que fizeram a diferença na história da ciência internacional

As mulheres fazem e fizeram a diferença em toda a história da humanidade, por sua força, delicadeza, iniciativa. No campo…

As mulheres fazem e fizeram a diferença em toda a história da humanidade, por sua força, delicadeza, iniciativa. No campo da ciência e pesquisa não é diferente. Seu legado está presente em diferentes períodos e campos do conhecimento.

E já que hoje é Dia Internacional da Mulher, como forma de homenageá-las e reconhecer tudo o que fizeram, elegemos 7 grandes mulheres na história da ciência internacional. Conheça quem são, suas pesquisas e invenções.

Amalie Emmy Noether (1882 – 1935)
Nascida na Alemanha, Amalie Emmy Noether, ou apenas Emmy Noether, foi física e matemática com importantes pesquisas sobre a Teoria dos Anéis e Álgebra Abstrata. Segundo relatos, foi considerada por Albert Einstein uma das mais importantes pesquisadoras na área de matemática. Na física, Emmy criou o Teorema de Noether, que explica as relações entre simetria e as leis de conservação da física teórica.

Edith Clarke (1883 – 1959)
Edith Clarke foi a primeira mulher a receber o diploma de engenharia elétrica do Instituto de Tecnologia de Massachusetts, o MIT, nos Estados Unidos, em 1918. Também foi a primeira professora de engenharia elétrica do país, lecionando na Universidade do Texas. Entre seus principais estudos, o destaque é a Clarke Calculator, um dispositivo para resolver problemas de linha de transmissão de energia elétrica.


Emily Warren Roebling (1843 –1903)

Considerada uma das primeiras engenheiras de campo, Emily Warren Roebling foi uma grande colaboradora do projeto de engenharia da Ponte do Brooklyn, um dos principais pontos turísticos de Nova Iorque (EUA). Com um vasto conhecimento em matemática e engenharia, como resistência dos materiais e construção de cabo, Emily passou a participar e supervisionar a execução da obra, quando seu sogro e seu marido, responsáveis pelo projeto, adoeceram. Ela foi a primeira pessoa a atravessar a ponte, que hoje liga o distrito do Brooklyn à Manhattan.


Maria Goeppert Mayer (1906 – 1972)

Segunda mulher a conquistar o Nobel de Física, em 1963, Maria Meyer foi uma física teórica alemã. Uma de suas principais pesquisas é sobre a estrutura do átomo, em que propôs um novo modelo do envoltório do núcleo atômico.


Mária Telkes (1900 – 1995)

Biofísica de origem húngara, Mária Telkes ficou conhecida por seus estudos relacionados à energia solar no reconhecido Instituto de Tecnologia de Massachussets (MIT). Além de ser uma das pessoas responsáveis pelo projeto da primeira residência do mundo aquecida com energia solar, no final da década de 40, Mária também inventou o gerador e o refrigerador termoelétricos.


Marie Curie (1867 – 1934)

Formada em física e matemática, Marie Curie descobriu, em 1898, os elementos químicos polônio (Po) e rádio (Ra). Foi a primeira mulher a lecionar na Universidade de Paris, onde se tornou cátedra. Marie também conquistou o prêmio Nobel de Física em 1903 e o prêmio Nobel de Química em 1911, se tornando a única pessoa a ganhar o reconhecimento duas vezes em áreas distintas. A cientista fundou os Institutos Curie em Paris e Varsóvia, que até hoje são grandes centros de pesquisa médica. Durante a Primeira Guerra Mundial, fundou os primeiros centros militares no campo da radioatividade.

Rosalind Franklin (1920 – 1958)
Formada em físico-química pela Universidade de Cambridge, na Inglaterra, Rosalind foi uma das percursoras em biologia molecular. É reconhecida por seus estudos de análise física dos materiais sobre a difração dos Raios-X e por descobrir o formato helicoidal do DNA, usado até hoje.

Além de reverenciar estes nomes, que sirvam de inspiração para as mulheres que queiram também fazer história na ciência.

Por que comemoramos aniversário de André-Marie Ampère?

Certamente você lembra do ampere, a unidade de medida da corrente elétrica ensinada nas aulas de física. Pois então! Esse…

Certamente você lembra do ampere, a unidade de medida da corrente elétrica ensinada nas aulas de física. Pois então! Esse nome é uma homenagem ao físico e matemático francês André-Marie Ampère. Aproveitamos o dia de nascimento dele para registrar sua história e sua importante contribuição à ciência em praticamente todos os ramos do conhecimento.

André-Marie Ampère nasceu em 1775 na cidade de Lyon, filho de um intelectual e uma comerciante. Autodidata, antes mesmo de ler e escrever, resolvia problemas aritméticos, demonstrando aptidão excepcional para o cálculo. Aos 12 anos ele já dominava os principais teoremas de álgebra e geometria.

Seu pai foi o principal incentivador de seus estudos. Criou uma biblioteca para o filho, que aos 11 anos Ampère havia lido completamente, e o ensinou o latim, idioma que aprendeu em poucas semanas e o permitiu leituras de importantes obras escritas na língua.

Duas grandes perdas o aproximaram ainda mais da vida científica. Primeiro seu pai, que foi decapitado durante a Revolução Francesa, quando Ampère estava com 18 anos. A segunda foi de sua esposa, Julie Carron, com quem se casou em 1799 e teve seu filho, Jean Jacques Ampère. Julie faleceu em 1803.

Poucos meses depois da perda da esposa, Ampère foi convidado a lecionar matemática no Liceu de Lyon. Antes disso, em 1800, havia publicado sua primeira obra, “Considerações sobre a Teoria Matemática do Jogo”, que o tornou conhecido no meio científico. Em 1814, ele foi eleito para o Institut de France, elaborando vários estudos sobre matemática e física.

As bases do Eletromagnetismo

A obra que imortalizou André-Marie Ampère foi publicada em 1826, intitulada “Teoria dos Fenômenos Eletrodinâmicos”. Com a descoberta de que dois fios condutores atravessados por uma corrente elétrica exercem ações recíprocas um sobre o outro, o físico estabelecia as bases científicas do eletromagnetismo.

Foi ele também o criador do primeiro eletroímã. Dispositivo fundamental para a invenção de vários aparelhos, como o telefone, o microfone, o alto-falante, o telégrafo etc. André-Marie Ampère faleceu em Marselha, França, no dia 10 de junho de 1836.

magnetismo

O magnetismo e sua relação com o motor

Certamente você já ouviu – e também usou – aquela famosa expressão “pólos iguais se repelem e os diferentes se…

Certamente você já ouviu – e também usou – aquela famosa expressão “pólos iguais se repelem e os diferentes se atraem”. Na verdade, essa frase resume a essência das propriedades dos ímãs. Formados por duas extremidades, os pólos norte e sul, são chamados assim em referência ao campo magnético da Terra.

Sua importância é tal que o ímã tem uma área exclusiva para estudar os fenômenos, denominada magnetismo. Os primeiros estudos surgiram no século VI a.C., mas foi no século VI que ela passou a ser aplicada na prática, com os chineses. A bússola foi a primeira invenção baseada na interação do campo magnético de um ímã (a agulha) com o campo magnético terrestre.

magnetismo

Até o século XIX, magnetismo e eletricidade eram considerados fenômenos completamente distintos. Quando essa relação passou a ser feita provocou uma verdadeira revolução nas pesquisas. Surgia a teoria do eletromagnetismo, segundo a qual cargas elétricas em movimento geram campo magnético e este em movimento gera corrente elétrica.

A partir daí, foi um boom de invenções que mudariam o curso da história, a começar pelos motores elétricos, que impulsionaram a era industrial no planeta. A produção de energia nas usinas hidrelétricas, raios-X, cartões magnéticos, ondas de rádio e televisão, aparelhos de telecomunicação. As ondas eletromagnéticas estão presentes onde quer que seja e fazem o mundo funcionar.
Venha conhecer mais sobre essa área da ciência aqui no Museu!

inventores

O que seria da Ciência sem os inventores!?

Feijão sem arroz, café sem leite, circo sem palhaço, vitrola sem som. Tem coisas que é difícil imaginar dissociadas. Pensa…

Feijão sem arroz, café sem leite, circo sem palhaço, vitrola sem som. Tem coisas que é difícil imaginar dissociadas. Pensa então o que seria da Ciência sem os inventores? Não tem sentido, não é mesmo? Afinal, a ciência é fonte de descobertas incríveis e de invenções revolucionárias.

Hoje, comemora-se o Dia do Inventor no Brasil. Mas você sabe o que é invenção? Por definição, ela é o ato de criar uma nova tecnologia, processo ou objeto, ou aperfeiçoá-los. É diferente de descoberta, situação em que um novo conhecimento pode ser adquirido ao acaso, sem um esforço direcionado.

Assim, o inventor é quem pesquisa. A invenção geralmente está ligada à resolução de um problema prático. É resultado de uma atividade tecnológica e a motivação costuma ser técnica.

inventores

Quer um exemplo prático?

A eletricidade foi uma das principais invenções da humanidade. Sua história começa no início do século VI a.c., na Grécia Antiga, quando o filósofo Thales de Mileto descobriu uma resina fóssil petrificada chamada âmbar, ou elektron em grego.

Ao esfregar sobre a pele e lã de animais, Thales observou que o âmbar atraía objetos leves como palhas e fragmentos de madeira. A partir daí, iniciaram os estudos sobre a eletrificação e eletricidade, resultando em incontáveis invenções que foram sendo aperfeiçoadas e estão presentes no nosso dia a dia.

Quer saber mais sobre eletricidade? Faça um tour virtual pelo nosso site e saiba o que te espera no Museu WEG.

Nossa história: como tudo começou?

Se um museu conta histórias sobre acontecimentos e fatos, quem é que conta a história do museu? Difícil responder, não é mesmo? É por isso que hoje, decidimos falar sobre nós mesmos, sobre a nossa história, nunca antes revelada. E você é o nosso convidado para fazer parte deste momento.

Se um museu conta histórias sobre acontecimentos e fatos, quem é que conta a história do museu? Difícil responder, não é mesmo? É por isso que hoje, decidimos falar sobre nós mesmos, sobre a nossa história, nunca antes revelada. E você é o nosso convidado para fazer parte deste momento.

A iniciativa de criar um acervo histórico surgiu em janeiro de 1982, com o diretor superintendente da Eletromotores WEG S/A, Vicente Donini durante a XVII CONWEG, convenção anual de representantes da empresa. O anúncio da criação do “Museu do Motor Elétrico”, teria como objetivo criar um registro histórico da evolução do motor elétrico.

Para compor o acervo, foi adotado como critério a antiguidade das peças, que deveriam ter acima de 40 anos. A coleta dos motores foi realizada através de cartas, com pedidos de doação a empresas brasileiras de motores e as pessoas chaves de empresas que haviam encerrado as atividades. Em 10 meses, já haviam sido coletados 20 motores.

Em paralelo, também foram realizadas pesquisas de livros e revistas com motores antigos, para contribuir com o projeto. O Parque Fabril WEG II, na área de administração das empresas, foi o local escolhido para abrigar o museu, com 210 metros quadrados de área para a exposição permanente.

A expectativa era captar 60 unidades para a inauguração oficial. A ação causou muito envolvimento dos colaboradores no período, que se engajaram com a causa, como o engenheiro e diretor técnico, Moacyr Rogério Sens:

– Pelo que sabemos, não há registro no mundo de um museu exclusivamente de máquinas elétricas girantes – disse Moacyr, na época.

Extraído Ata nº 02/82 de 25/10/1982 Acervo Museu WEG de Ciência e Tecnologia

Extraído Ata nº 02/82 de 25/10/1982
Acervo Museu WEG de Ciência e Tecnologia

Uma curiosidade da exposição foi a escolha dos pedestais para apoiar os motores. Todos eles eram feitos de troncos de madeiras de lei, com diversas espécies de árvores nativas, vindas de todo o país.

Entre as peças adquiridas, duas despertavam mais interesse. A primeira era um motor fabricado em 1883, pela Damoulin Froment, de Paris. A segunda e tão importante quanto, foi o primeiro motor elétrico fabricado pela WEG, em 1961.

De acordo com Rudi Zerbien, que participou da criação do Museu do Motor Elétrico, o processo de resgate dos motores antigos e a criação do museu foi um processo enriquecedor. Segundo ele, o projeto permitiu conhecer, a partir de um novo olhar, a história de um produto que a empresa fabricava, até então desconhecida.

A inauguração do Museu do Motor Elétrico ocorreu em 1986, no aniversário de 25 anos da WEG. A exposição ficava disponível para todos os colaboradores e visitantes da empresa.

Extraído do Notícias WEG nº 115 de Março/1988 Acervo Museu WEG de Ciência e Tecnologia

Extraído do Notícias WEG nº 115 de Março/1988
Acervo Museu WEG de Ciência e Tecnologia

Criação do Museu WEG

Em 2001, durante o evento de celebração aos 40 anos da empresa, foi anunciada a criação do Museu WEG. A cerimônia contou com a presença de diretores, colaboradores, autoridades do município e comunidade.

Para concretizar a ideia, foi feito um novo projeto arquitetônico, para ampliar a área de instalação do museu para 960 metros quadrados, com estrutura adaptada para com espaços interativos e de exposições.

O prédio adquirido, foi a primeira sede da WEG, em 1961, que começou com apenas seis funcionários e  abrigou a produção por cerca de quatro anos.

A inauguração do Museu WEG aconteceu em 16 de setembro de 2003. Os três primeiros visitantes de honra foram os sócios fundadores da empresa, Eggon João da Silva, Werner Ricardo Voigt, Lilian Werninghaus, esposa de Geraldo Werninghaus.

O sucesso do museu foi imediato.  Com apenas um mês de funcionamento, mais de 4 mil visitantes passaram por lá, entre colaboradores, comunidade e turistas.

Extraído do Notícias WEG Colaborador nº 187 de Outubro/2003 Acervo Museu WEG de Ciência e Tecnologia

Extraído do Notícias WEG Colaborador nº 187 de Outubro/2003
Acervo Museu WEG de Ciência e Tecnologia

Mais mudanças

De 1986 para cá, muita coisa mudou. Inclusive o Museu WEG. Em 2013, ano em que completou 10 anos, houve a necessidade de uma reformulação.

O acervo e as atrações foram renovados e o nome também mudou. Passou a se chamar Museu WEG de Ciência e Tecnologia e contou com o apoio da Lei Federal de Incentivo à Cultura, um passo muito importante para o reconhecimento cultural.

Hoje, além de conhecer os conceitos básicos de física, essenciais para a compreensão da elétrica e do magnetismo, o visitante pode interagir com as atrações e descobrir na prática, a aplicação no cotidiano, além de conhecer a história da WEG e o impacto para a cidade de Jaraguá do Sul.

Agora que você já sabe como tudo começou, aproveite para visitar o Museu WEG de Ciência e Tecnologia e ver de perto e vivenciar cada detalhe dessa história.

 

Novas ações educativas no museu

Para continuar estimulando o conhecimento em torno de ciência e tecnologia, o Museu WEG ampliou o seu programa educacional com duas novas ações educativas.

Para continuar estimulando o conhecimento em torno de ciência e tecnologia, o Museu WEG ampliou o seu programa educacional com duas novas ações educativas, “Também sou cientista” e “Gerando e transformando energia”, direcionadas para alunos do 6º ao 9º do Ensino Fundamental e Médio. Ao todo, são sete opções de ações educativas para professores e alunos participarem.

Cada ação educativa é composta por uma temática, com conteúdo e ações específicas sobre o tema. Com uma dinâmica divertida, os alunos aprendem conceitos técnicos e práticos sobre ciência, integrando o assunto abordado na sala de aula.

Novidades

O programa “Também sou cientista” permite que os estudantes conheçam as histórias e descobertas dos cientistas, reconstruam suas experiências e aprendam a identificar onde essas técnicas são aplicadas no dia a dia.

Com a ação “Gerando e transformando energia” os estudantes podem aprender sobre os geradores e o sistema de funcionamento e claro, as diversas maneiras que promovem a transformação e a geração de energia.

Nas duas ações educativas são aplicadas as técnicas de cognição, metacognição, cooperação, sócio-afetiva e aprendizagem para a vida. As atividades possuem duas horas de duração.

Com o programa educacional, as ações se transformam em ferramentas de comunicação próxima entre escola e Museu WEG, transformando o espaço em um sistema de educação continuada para alunos e professores.

Como participar

Todas as ações educativas são gratuitas e incluem material de atividade e monitoria da equipe do museu. Para participar, o professor deve escolher a ação educativa e agendar um horário aqui. www.museuweg.net/contato/agendamento

Ainda não conhece o Museu WEG? Faça um tour virtual e prepare uma atividade educacional com seus alunos aqui.