Tag: museu weg

O que é e como funciona a energia solar fotovoltaica?

A energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos.

Você já parou para pensar que o Sol é o principal responsável pela origem de diversas fontes de energia? Através dele se dá a evaporação, fase inicial do ciclo das águas, que permite a geração de energia através das hidrelétricas, o Sol também permite a circulação atmosférica por todo o mundo, originando os ventos, outra fonte energética.

Já a energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos, porém quanto maior for a radiação solar, maior será  a quantidade de eletricidade produzida. A energia provinda do sol é inesgotável, uma excelente fonte de calor e luz e uma das grandes alternativas energéticas para o futuro.

Procurando por fontes de energia em locais remotos e isolados, praticamente sem rede elétrica, o desenvolvimento e investimento em energia solar começou em empresas do setor das telecomunicações. A tecnologia também foi logo utilizada para as missões no espaço

A energia fotovoltaica pode oferecer solução para diversas necessidades: desde ligar uma simples lâmpada de um poste de iluminação, até oferecer uma alternativa de produção de energia para uma casa ou mesmo uma grande usina solar, produzindo energia para milhares de famílias.

 

Como é produzida a energia solar

O processo de conversão da energia solar somente é possível graças ao efeito fotovoltaico, (composto por células normalmente feitas de silício ou outro material semicondutor). Assim, quando a luz solar incide sobre uma dessas células fotovoltaicas, os elétrons do material semicondutor são postos em movimento e geram eletricidade.

O efeito fotovoltaico, muito resumidamente, foi identificado por Edmond Becquerel em 1839, e significa o aparecimento de uma diferença de potencial nos extremos de uma estrutura de material semicondutor, que se deve à absorção da luz!

 

Entendendo a esquemática da energia solar fotovoltaica:

1) Os fótons da energia solar atingem as células fotovoltaicas, fazendo com que alguns dos elétrons que circundam os átomos se desprendam.

2) Estes elétrons livres vão migrar, através da corrente eléctrica, para a parte da célula de silício que está com ausência de elétrons.

3) Durante o dia todo, os elétrons irão fluir em uma direção constantemente, deixando átomos e preenchendo lacunas em átomos diferentes. Este fluxo de elétrons cria uma corrente elétrica, ou seja, a Energia Solar Fotovoltaica.

A potência gerada através dessa esquemática é enviada para o inversor — equipamento que converte a energia para os padrões da rede concessionária (corrente alternada). Depois disso, a energia é injetada na rede elétrica da residência, pronta para ser utilizada pelo consumidor.

 

 

sistema-de-microgeraçãoDiagrama esquemático do sistema fotovoltaico. Fonte: luzsolar.com.br

 

O mercado da energia fotovoltaica

Mais de 100 países já utilizam energia solar fotovoltaica. Os mercados que mais crescem são China, Japão e Estados Unidos, enquanto a Alemanha é o país que mais a produz, a energia provinda do sol é responsável por 6% da sua demanda de eletricidade. A energia solar fotovoltaica é agora, depois de hidráulica e eólica, a terceira mais importante fonte de energia renovável em termos de capacidade instalada a nível mundial.

Entre as vantagens na utilização da energia solar fotovoltaica estão: energia limpa; pode ser instalada em qualquer lugar; sistema silencioso; fonte inesgotável; sistema confiável; baixa manutenção; fácil instalação; é modular, pode ser ampliado conforme necessidade.

A energia fotovoltaica há muito tempo é vista como uma tecnologia de energia limpa e sustentável, que se baseia na fonte renovável de energia mais abundante e amplamente disponível no planeta – O SOL. Se você quer saber mais sobre fontes de energia renováveis, leia nosso artigo sobre a matriz energética no Brasil. 🙂

 

O que aconteceria se, de repente, a Terra parasse de girar?

Se a Terra parasse de girar de repente, tudo o que se encontra na superfície terrestre seria arrancado violentamente daqui: pessoas, árvores, animais, cidades, oceanos e até mesmo o ar da atmosfera.

Tudo sairia voando!

Se a Terra parasse de girar de repente, tudo o que se encontra na superfície terrestre seria arrancado violentamente daqui: pessoas, árvores, animais, cidades, oceanos e até mesmo o ar da atmosfera. Tudo o que se encontra na superfície terrestre sairia voando! Tudo por causa da inércia dos corpos, já que tudo que existe na Terra, inclusive o ar, gira junto com o planeta.  

Agora imagine que a Terra completa sua rotação a cada 24 horas a uma velocidade de aproximadamente 1.700 quilômetros por hora! Se a freada brusca de um ônibus faz com que os passageiros sejam jogados para a frente, imagine o que não aconteceria com os habitantes da Terra?

Explicando de maneira simples: imagine um ônibus em alta velocidade freando de repente. A inércia faz com que todos os passageiros vão para frente, podendo até mesmo serem arremessados. Ou seja: se você estiver dentro de um ambiente fechado, as notícias não são lá muito boas.

Os corpos seriam arrancados da superfície e em seguida cairiam, pois mesmo os 1.700 quilômetros por hora, não são suficientes para fazer com que os corpos escapem do campo gravitacional e se percam no espaço. Então todos os destroços sólidos, os oceanos e a atmosfera cairiam de volta.

 

earth-1990298_960_720Tudo o que se encontra sobre a superfície terrestre seria arrancado violentamente.

 

O acontecimento geraria fissuras e pontos de tensão na crosta, o que causaria grandes derramamentos de magma e os maiores terremotos já vistos. Os oceanos continuariam a se mover a quase 1.700 quilômetros por hora no equador, gerando a maior onda e o maior tsunami já registrados na história. A atmosfera continuaria a se mover com a mesma velocidade da rotação da Terra, o que causaria ventos até 6 vezes mais fortes que os furacões de categoria 5. Esses ventos estariam tão rápidos que fariam os objetos parados em relação a eles quebrarem a barreira do som.

Agora, imagine que alguém sobreviva a esse voo em velocidade supersônica! Seria quase impossível sobreviver, a Terra continuaria sua trajetória ao redor do Sol, mas a falta de rotação acabaria com o conceito de dia e noite, seriam seis meses exposição solar — um deserto com temperaturas altíssimas — e seis meses de escuridão — tão frio que crostas de gelo seriam formadas rapidamente. A diferença térmica entre os dois lados provocaria ventanias terríveis.

Outra possível consequência dessa catástrofe, seria a perda de nosso campo magnético. Ou seja: a Terra ficaria sem proteção contra as partículas de altas energias provenientes do vento solar. Que medo!

Quais as matrizes energéticas mais utilizadas no Brasil?

Uma matriz energética é o conjunto de todos os tipos de energia que um país, estado, ou até mesmo o…

Uma matriz energética é o conjunto de todos os tipos de energia que um país, estado, ou até mesmo o mundo, produz e consome. Algumas pessoas podem confundir a matriz energética com a matriz elétrica, mas não é difícil diferenciar: enquanto a energética representa o conjunto de fontes de energia disponíveis para movimentar carros, acender o fogo do fogão e gerar eletricidade, a matriz elétrica é formada apenas pelo conjunto de fontes disponíveis para gerar energia elétrica. Ou seja: a matriz elétrica é parte da matriz energética.

Matriz energética no Brasil

Ao contrário da tendência mundial de uso de fontes não renováveis de energia (aquelas que se esgotam com o tempo), a matriz energética no Brasil é uma das mais renováveis do mundo industrializado, ou seja, nosso país possui boa parte — cerca de 43% — de fontes energéticas que se renovam na natureza em um curto espaço de tempo, como a hidráulica, eólica, biomassa e solar.
Essa característica de nossa matriz é muito importante. As fontes não renováveis de energia são as maiores responsáveis pela emissão de gases de efeito estufa e, como consumimos mais energia de fontes renováveis que em outros países, emitimos menos gases de efeito estufa por habitante que a maioria dos outros países. Você pode entender melhor este assunto em Energia e Aquecimento Global.
Mas ainda podemos melhorar muito: o grande desafio é diminuir nos próximos anos o uso de fontes poluidoras como, por exemplo, petróleo (do qual somos dependentes) e carvão mineral.

 

A Matriz energética do Brasil (dados de 2017)

36,2% – Petróleo e derivados
Principal fonte de energia para motores de veículos. Além de não ser renovável é altamente poluente.

17,4% – Biomassa (bagaço de cana, lenha, lixívia)
Biocombustíveis como, por exemplo, o etanol.

12,9% – Gás Natural
Uso principalmente em automóveis e residências.

11,9% – Hidráulica e eletricidade
Maior fonte de produção de energia elétrica no Brasil. Dado inclui a energia hidráulica produzida e importada pelo Brasil.

9,5% – Lenha e carvão vegetal
Usada, principalmente, por pequenas empresas e residências.

5,6% – Carvão Mineral e derivados
Usada principalmente em termelétricas. Dado inclui gás de coqueria.

5,8% – Eólica
Energia limpa e renovável gerada pelo vento. O Brasil tem grande potencial e sua produção está aumentando a cada ano.

2,2% – Gás industrial
Gás utilizado por indústrias, comércio, condomínios etc.

1,4% – Nuclear
Energia limpa produzida nas usinas de Angra 1 e Angra 2 no estado do Rio de Janeiro. Uso de urânio (U308) e derivados.

0,1% – Outras
Entre outras fontes podemos destacar a solar.

Fonte : Ministérios da Minas e Energia do Brasil (Resenha Energética 2018).

 

Curiosidades

– Na década de 1940, cerca de 80% da energia gerada no Brasil era proveniente da queima de lenha.

– Na matriz energética mundial, apenas 13,8% (dados de 2017) é composta por fontes renováveis.

– O uso das usinas hidrelétricas para obtenção de energia representa 75% da geração elétrica no Brasil, que conta com 140 usinas operando na geração de energia.

– O etanol, derivado da cana-de-açúcar, alcançou, no ano de 2015, a marca de 37 bilhões de litros produzidos. O uso desse biocombustível como alternativa ao uso da gasolina (produzida por meio da queima de combustíveis fósseis) evitou que o país emitisse, nos últimos 30 anos, cerca de 800 milhões de toneladas de gás carbônico à atmosfera.

– No que tange à produção de energia eólica em comparação aos países da América Latina e ao Caribe, o Brasil é o que possui maior capacidade de produção de energia por meio dos ventos (dados do Atlas Eólico Nacional).

Porém nossa matriz energética também possui algumas desvantagens como, por exemplo, depender de combustíveis fósseis para geração de energia, e a energia hidráulica, responsável pela maior produção no país, causar grandes impactos socioambientais. Temos um grande caminho pela frente!
Gostou do assunto? Que tal visitar o Museu WEG e conhecer mais sobre nossa matriz energética? Vem pra cá, a entrada é gratuita. 😉

17ª Semana Nacional dos Museus

De 13 a 19 de maio acontece a 17ª Semana Nacional de Museus.

De 13 a 19 de maio acontece a 17ª Semana Nacional de Museus – SNM, temporada cultural promovida pelo Ibram em comemoração ao Dia Internacional de Museus (18 de maio). Nesta edição, 1.114 instituições de cultura de todo o país oferecem ao público 3.222 atividades especiais, como visitas mediadas, palestras, oficinas, exibição de filmes e muito mais. Em 2019, assim como nos anos anteriores, nós também estamos participando desta SNM.

A eficácia das atividades desempenhadas pelo setor museal na realização dessa ação, comprova que a movimentação nacional de programações culturais é um verdadeiro instrumento de ampliação do acesso à cultura e de visibilidade dos museus. Ademais, ela é responsável por um significativo aumento de público: durante a semana em que ocorre, a média de visitantes dos museus participantes sobe 79%.

O tema que norteia esta edição da Semana Nacional de Museus é “Museus como Núcleos Culturais: O Futuro das Tradições”, que propõe discutir o papel dos museus como centros emanadores e, igualmente, receptores de práticas, costumes e pensamentos de nossa cultura.

O tema escolhido vem ao encontro com a missão do Museu WEG de Ciência e Tecnologia que é a preservação da história. Assim como o museu preserva a história da WEG, as pessoas costumam preservar a história das famílias, principalmente através de fotografias. A tradição de colocar fotos em porta-retratos vem de longa data, porém, com a facilidade de fotografar o costume de revelar uma foto e principalmente, colocá-las em exposição vem diminuindo. A intenção da oficina, que será realizada com alunos do 5º ano, é resgatar este costume e ao mesmo tempo, fazer que a fotografia exposta fique em bom estado de conservação por muito tempo.

A ação no museu acontecerá em 17 de maio, os alunos farão uma breve visita na exposição, focando principalmente na conservação do acervo e na história da WEG. Após, será realizada a atividade prática com orientações no campo de conservação de acervos e, serão montados, junto com as crianças porta-retratos nas melhores condições possíveis para que, a fotografia colocada nela, seja bem conservada. Após esta montagem, as crianças receberão a foto que elas fizeram na chegada para colocarem no porta-retrato. Desta forma, além de conservar a foto irão preservar este momento que vivenciaram no museu.

Acompanhe nossas redes sociais para ficar por dentro de nossas programações e ver o resultado desta ação!

www.facebook.com/museuweg
www.instagram.com/museuweg

Ohm

Georg Simon Ohm, resistência elétrica e a Lei de Ohm

Georg Simon Ohm foi um físico e matemático que contribuiu muito com a física, principalmente para a eletrodinâmica, onde estabeleceu…

Georg Simon Ohm foi um físico e matemático que contribuiu muito com a física, principalmente para a eletrodinâmica, onde estabeleceu uma lei batizada com seu nome. Ohm nasceu em 16 de março de 1787, em Erlangen, na Bavária (Alemanha) e iniciou sua carreira como professor de matemática no Colégio dos Jesuítas, na cidade de Colônia, em 1825.

Estudante da Universidade de Erlangen, obteve seu doutorado em 1811 com a apresentação de sua dissertação sobre luz e cores. Sua intenção era se tornar professor universitário, então optou por fazer experiências com a eletricidade. Para isso, construiu seu próprio equipamento, incluindo os fios.

Foi experimentando diferentes espessuras e comprimentos de fios que acabou descobrindo relações matemáticas extremamente simples envolvendo essas dimensões e as grandezas elétricas. Inicialmente, verificou que a intensidade da corrente era diretamente proporcional à área da seção do fio e inversamente proporcional a seu comprimento. Com isso, Ohm pôde definir um novo conceito: o de resistência elétrica.

ohm-face

Em 1827, publicou o resultado daquele que se tornou o seu mais importante trabalho — O circuito galvânico examinado matematicamente. Esse trabalho definiu o que conhecemos hoje como a Lei de Ohm: “A intensidade da corrente elétrica que percorre um condutor é diretamente proporcional à diferença de potencial e inversamente proporcional à resistência elétrica do circuito.”

Como ocorre com tantos pesquisadores, seu trabalho começou a ser reconhecido no exterior. Somente em 1841 a importância de seu trabalho sobre a resistência de condutores foi reconhecida, e Ohm recebeu a medalha da Real Sociedade Britânica. Em 1849, Ohm tornou-se professor da Universidade de Munique, cargo que almejava e ocupou por apenas cinco anos, os últimos de sua vida.

Tabela

Tabela periódica mostra quais elementos vão desaparecer no futuro

Você já deve conhecer a Tabela periódica, um modelo que agrupa os elementos químicos conhecidos e suas propriedades. Na tabela,…

Você já deve conhecer a Tabela periódica, um modelo que agrupa os elementos químicos conhecidos e suas propriedades. Na tabela, os elementos são organizados em ordem crescente, correspondente ao números de prótons. Hélio, oxigênio, magnésio e alumínio são alguns deles. Mas, você já parou para pensar que estes elementos podem não ser infinitos e estar prestes a desaparecer em um futuro próximo?

A Sociedade Química Europeia, um grupo que representa mais de 160 mil estudiosos da União Europeia, fez uma tabela periódica bem diferente da convencional, o projeto tem como objetivo mostrar a abundância, escassez e finitude de elementos encontrados na Terra.

tabela_periodica

Tabela Periódica mostra escassez de elementos – Sociedade Química Europeia

Nesta nova tabela, a grande novidade está no modo como os elementos são expostos: em vez de seguir a ordem clássica, onde cada um dos elementos tem um quadrado simétrico, essa tabela os categoriza a partir de sua abundância ou escassez. Enquanto na tabela periódica tradicional são apresentados 118 elementos, inclusive os sintetizados, o novo projeto classifica apenas os elementos naturalmente encontrados na Terra — 90, ao todo.

Cole-Hamilton, presidente da Sociedade Química Europeia, conta que o objetivo é mostrar como os elementos em nosso planeta são finitos e podem, dentro de alguns anos, desaparecer.

Mas vamos com calma! Para nosso alívio, segundo a tabela, o oxigênio — que garante nossa respiração — não corre risco de extinção. Já elementos usados na produção de computadores e celulares, por exemplo, podem estar acabando. Um deles é o índio, que é usado em telas touch screens para celulares e computadores.

Uma das recomendações, segundo Hamilton, é diminuir a compra desenfreada de tecnologia, algo que parece quase impossível nos dias atuais. “Se continuarmos usando o elemento índio da forma como estamos nossas reservas vão se esgotar em 20 anos”, contou o presidente ao programa de rádio Marketplace.

Mas não são apenas os elementos usados para tecnologia que correm risco de extinção: o hélio, utilizado em ressonâncias magnéticas, também não anda tão bem quanto se imaginava. Hamilton conta que, apesar do elemento ser um dos mais abundantes na Terra, é consumido em um ritmo tão desenfreado que deve durar apenas mais 10 anos.

Sempre é hora de repensar e reinventar a maneira como utilizamos nossos recursos, sejam eles naturais ou não. Ainda bem que existe a Ciência para nos alertar e criar novas formas de conviver com o mundo!

Fonte: Revista Galileu.

palestra-gratuita

Mulheres na Ciência

O legado das mulheres para a ciência é inquestionável. Porém, na pesquisa e tomada de decisões da área científica, elas…

O legado das mulheres para a ciência é inquestionável. Porém, na pesquisa e tomada de decisões da área científica, elas ainda são a minoria. Mas isso não quer dizer que não existam mulheres que fazem, fizeram e ainda vão fazer um trabalho incrível na área.

Já falamos aqui no blog sobre as mulheres que fizeram a diferença na história da ciência — clique aqui para ler — e, não somente no mês que é comemorado o Dia Internacional da Mulher, mas em todos os dias do ano, queremos aumentar a conscientização sobre o trabalho dessas cientistas, incentivando e proporcionando oportunidades iguais para sua participação e liderança em todos os campos científicos! =)

Convite para palestra

Falando em Mulheres na Ciência e a importância de empoderá-las, no dia 14 de março vamos receber aqui no Museu a colaboradora da WEG Tintas, Cristiane Medeiros, que fará uma palestra sobre “Tecnologias Emergentes em Polímeros e Tintas”. Nela, serão tratados temas sobre o processo fabricação de tintas, seu mercado e como a indústria trabalha com inovação, sustentabilidade e polímeros.

Sobre a Cristiane:
Cristiane Medeiros é Chefe na Seção de Desenvolvimento de Resinas e Eletroisolantes / Pesquisa e Inovação Tecnológica.

Responsável pelo desenvolvimento de projetos para resinas/polímeros com aplicação em tintas líquidas, tintas em pó e materiais isolantes (resinas impregnação e esmalte para fios). Gestora da seção de Pesquisa e Inovação Tecnológica da empresa WEG Tintas, buscando novas aplicações e Inovações para a empresa em suas linhas de produtos. Possui amplo conhecimento na área de análises e processos de polímeros.

Formada em Bacharel Química pela Universidade Regional de Blumenau FURB, cursando MBA em Gestão empresarial pela Fundação Getúlio Vargas e Mestranda pela PUC em Inovação e Gestão 3.0

Venha prestigiar o trabalho de mais uma Mulher na Ciência!

Palestra: Tecnologias Emergentes em Polímeros e Tintas
Data: 14/03
Horário: 15h30
Local: Museu WEG

As inscrições podem ser feitas neste link: AQUI
Dúvidas e informações (47) 3276 4550 ou museu@weg.net.

Motor explosão

Como funciona um motor a prova de explosão

Você já ouviu falar sobre motores à prova de explosão? Eles são importantes para ambientes onde existe a presença de…

Você já ouviu falar sobre motores à prova de explosão? Eles são importantes para ambientes onde existe a presença de gases ou vapores que podem entrar em combustão, em caso de contato com faíscas ou temperaturas elevadas.

Quando o assunto é área de risco, o uso de produtos apropriados e a manutenção adequada são exigências obrigatórias para atender normas e padrões de mercado. Porém isso nem sempre é o suficiente para gerenciar as áreas de risco e preservar o patrimônio e a vida das pessoas que trabalham nelas. Atmosferas propícias a uma explosão podem ser encontradas nos mais diversos segmentos da Indústria como o Petroquímico, Alimentício, Usinas de Açúcar e Etanol, Farmacêutico, Têxtil, Papel e Celulose entre tantos outros.

Por esse motivo a WEG possui uma linha de motores trifásicos à prova de explosão, de baixa tensão, W22Xd, resultado de um intenso trabalho de pesquisa e desenvolvimento. A linha incorpora os conceitos inovadores da plataforma W22 com altos níveis de rendimento, economia de energia, baixo custo operacional, vida útil estendida, redução de manutenção e, principalmente, segurança em ambientes com a presença de atmosferas explosivas.

Além de possuir temperaturas de superfície baixas e o máximo de cuidado para evitar faíscas, o motor à prova de explosão é, construtivamente, mais robusto de maneira que, no caso de uma explosão interna ao motor, a chama não se propague para o ambiente causando uma explosão em proporções maiores, “segurando” a explosão em seu interior.

Agora que você já conhece este tipo de motor, veja neste vídeo, em detalhes, a geração de motores à prova de explosão da WEG.

Como se distribui energia elétrica em uma cidade?

Já imaginou se sua cidade não tivesse energia elétrica?

Já imaginou se sua cidade não tivesse energia elétrica? Talvez você não tivesse um celular ou um computador para usar. Banho quente? Só a gás. Geladeira e máquina de lavar roupas? Nada disso. Ruas iluminadas e máquinas funcionando nas fábricas? Também não.

Já sabemos o quanto a energia elétrica é importante. Mas, você sabe qual é o caminho que ela faz até chegar à tomada da sua casa? A energia surge do movimento de geradores e passa por estações transformadoras e redes de fio de alta tensão para percorrer um grande caminho e chegar até você.

Passo 01 – estação geradora

A energia elétrica pode vir de diferentes fontes. No Brasil, a mais utilizada é a das usinas hidrelétricas. Nelas, a queda d’água movimenta um gerador que cria um campo magnético, fazendo surgir uma corrente elétrica alternada.

Passo 02 – aumento de tensão

Da usina, a energia vai para subestações de transmissão, onde passa por um transformador que irá aumentar sua voltagem de 6.600 volts para 345 mil volts. Em seguida, segue pelas linhas de alta tensão.

Passo 03 – transporte

A eletricidade é levada por centenas de quilômetros através de torres de alta tensão. Neste caminho, parte da energia é perdida sob a forma de calor. Para compensar essa perda, ela é transportada em altíssima voltagem.

Torre Elétrica

Passo 04 – diminuindo a tensão

Próximo às cidades, a eletricidade chega em subestações de distribuição que diminuem sua voltagem, primeiramente para 138 mil volts e, logo em seguida, para 13.800 volts. É nesta tensão que ela segue para a rede de distribuição, percorrendo a fiação aérea ou subterrânea que a leva até as ruas, indústrias e residências.

 

A energia nas indústrias e residências

No Brasil, as indústrias são responsáveis por consumir quase metade da energia produzida. Geralmente, as empresas de grande porte possuem suas próprias subestações, com transformadores que alteram a tensão elétrica conforme a necessidade.

Para as residências, a distribuição é dividida em regiões. Cada circuito de 13.800 volts atende cerca de 5 a 10 mil lares. Mas, antes disso, o circuito passa por mais um transformador. Esse transformador é o que vemos nos postes de luz e é ali que a tensão finalmente cai para 110 ou 220 volts.

Antes de chegar nas tomadas de nossa casa, a energia passa por um quadro de luz, aquele equipamento que conhecemos como “relógio”, que é onde a fornecedora irá medir o consumo mensal de cada lar. Assim podemos usar o chuveiro elétrico, televisão, computador… e não ficar no escuro, claro! 🙂

 

Aprendendo com o Museu WEG

Se você quer saber mais sobre a distribuição de energia elétrica, faça uma visita ao Museu WEG de Ciência e Tecnologia! Seja sozinho ou em grupo, aqui é possível aprender de forma interativa sobre todo o processo. No equipamento abaixo, por exemplo, o visitante poderá conhecer as diferentes formas de geração de energia e suas fontes consumidoras. Ao construir cada um dos itens, é possível notar quais são os impactos sociais, ambientais e financeiros na nossa vida.

 

Cadeia integrada - Museu WEG

Cadeia integrada – Museu WEG

 

As grandes descobertas de Joseph Henry

Joseph Henry foi um físico norte-americano, nascido em 1797, que deixou importantes descobertas nas áreas da eletricidade e magnetismo como…

Joseph Henry foi um físico norte-americano, nascido em 1797, que deixou importantes descobertas nas áreas da eletricidade e magnetismo como legado.

Uma das maiores contribuições de Joseph Henry para a ciência foi a indução eletromagnética, descoberta em 1831 enquanto construía eletroímãs. Porém, enquanto Henry fazia esta descoberta nos Estados Unidos, o cientista Michael Faraday também a fazia, na Inglaterra. Apesar dos estudos dizerem que Henry foi o primeiro a descobrir o fenômeno, a descoberta oficial é atribuída a Faraday um ano depois, por ter publicado primeiro um estudo muito mais detalhado sobre o assunto. A indução magnética é o nome que se dá ao fenômeno no qual um campo magnético variável produz uma corrente elétrica num circuito, chamada de corrente induzida.

Outra invenção creditada a Henry é a do motor elétrico, embora ele também não tenha sido o primeiro a registrar a patente. Seus estudos sobre relê eletromagnético ajudaram Morse a criar o telégrafo elétrico. Mais tarde, provou que as correntes elétricas podem ser induzidas à distância, magnetizando uma agulha com a ajuda de um relâmpago a 13 quilômetros de distância.

Joseph Henry foi um cientista extremamente ativo nas suas investigações, não só em eletricidade e magnetismo. Entre 1838 e 1846, publicou, por exemplo, artigos sobre capilaridade — a propriedade física que os fluidos têm de subir ou descer em tubos extremamente finos. Essa ação pode fazer com que líquidos fluam mesmo contra a força da gravidade ou à indução de um campo magnético. E, fosforescência — capacidade que uma espécie química tem de emitir luz, mesmo no escuro, devido a sua estrutura eletrônica especial.

Em 1845, Henry utilizou um termo galvanômetro, um instrumento de detecção de calor, para mostrar que as manchas solares emitem menos radiação que o resto da superfície solar. Outros artigos que escreveu foram sobre atomicidade (1846) e sobre a teoria dos imponderáveis (1859). Henry demonstrou bastante interesse sobre o daltonismo também, além de ter feito investigações sobre propagação e detecção de luz e som.

O cientista faleceu em 1878, deixando diversos estudos que permitiram novas invenções utilizadas até hoje em seu legado.

Quer conhecer mais nomes da física? Fique sempre ligado aqui no blog e na nossa página do Facebook! Quem será o próximo? 😉