Tag: física

O que é eletroquímica?

Você sabe do que se trata a eletroquímica?

A eletroquímica está muito presente no nosso dia a dia, inclusive, se você está lendo este artigo, é porque a eletroquímica está em ação.

Ela é encontrada em pilhas e baterias, celulares, lanternas, calculadoras, computadores e muitos outros objetos do nosso cotidiano. Trata-se de um dos ramos da físico-química que estuda as relações existentes entre reações químicas e a corrente elétrica.

As reações estudadas na eletroquímica podem ser divididas em oxirredução (oxidação e redução), pilhas, baterias e a eletrólise. Lendo sobre cada uma dessas reações, você terá uma compreensão mais aplicada sobre o que é a eletroquímica. Vamos lá?

Reações da eletroquímica

Para entender melhor e observar a aplicação da eletroquímica no nosso dia a dia, confira abaixo como cada uma das reações estudadas por esse ramo da físico-química funciona. 

Reações de oxirredução

A oxirredução é um fenômeno químico. Nele, há a produção de energia elétrica a partir da ocorrência da oxidação e da redução de espécies químicas. Suas reações são caracterizadas pela perda e pelo ganho de elétrons:

  • Oxidação é a perda de elétrons. É provocada pelo elemento chamado de agente oxidante.
  • Redução é o ganho de elétrons. É provocada pelo elemento chamado de agente redutor.

Em resumo, isso significa que, no processo de oxirredução, ocorre a transferência de elétrons de uma espécie para outra. 

Quando um átomo ou íon recebe elétrons e tem a sua carga ou o seu número de oxidação (Nox) diminuído, dizemos que ele sofreu uma redução. Já a espécie que perde os elétrons sofre a oxidação, tendo o seu Nox aumentado.

As ações de oxirredução estão presentes no cotidiano, como na oxidação do ferro (quando forma a ferrugem), na redução de minérios metálicos para a produção de metais, formação do aço, corrosão de navios, etc.

Pilhas e baterias

Em resumo, a pilha converte energia química em energia elétrica de modo espontâneo. Ela também é chamada de célula eletroquímica, é composta por dois eletrodos e um eletrólito. Quando conectamos duas ou mais pilhas, forma-se uma bateria.

A conversão de energia química em energia elétrica ocorre por meio de uma reação de oxirredução. 

Esse processo acontece espontaneamente, pois há a transferência de elétrons entre um metal que tem a tendência de doar elétrons (lado negativo: ânodo) por meio de um fio condutor para um metal que tem a tendência de receber elétrons (lado positivo: cátodo).

Algumas pilhas ou baterias não podem ser recarregadas, essas são chamadas de primárias. Nelas, a reação de oxirredução funciona por determinado período, fornecendo energia ao sistema até que a reação química se esgote e o dispositivo pare de funcionar.

No entanto, as pilhas ou as baterias secundárias são recarregáveis e podem ser utilizadas diversas vezes. Um exemplo disso é a bateria usada em automóveis (baterias chumbo/óxido de chumbo ou chumbo/ácido).

Esse tipo de bateria é recarregada quando recebe uma corrente elétrica contínua, a diferença de potencial recebida é capaz de inverter os polos e mudar o sentido da reação química, fazendo com que a bateria funcione e grande parte do ácido sulfúrico se regenere.

Conheça o inventor da pilha voltaica.

Eletrólise

Ao contrário das pilhas, a eletrólise é a reação de oxirredução que ocorre de modo não espontâneo e converte energia elétrica em energia química.

Existem dois tipos de eletrólises:

Eletrólise ígnea: é aquela que se processa a partir de um eletrólito fundido, ou seja, pelo processo de fusão. É feita com ausência de água. A corrente elétrica passa pela substância iônica na fase líquida (fundida). 

Um exemplo disso é a eletrólise do cloreto de sódio (sal de cozinha) fundido, que produz o gás cloro e o sódio metálico – este último é tão reativo que chega a explodir em contato com a água.

Eletrólise aquosa: neste caso, temos íons fornecidos pela substância dissolvida na água. Em solução aquosa, a eletrólise pode ser realizada com eletrodos inertes ou eletrodos ativos (ou reativos).

Um exemplo da utilização da eletrólise aquosa é no revestimento de peças com metais que se oxidam mais facilmente que o metal que constitui a peça para protegê-la contra a corrosão. 

Aplicações da eletroquímica

Para visualizar melhor todos os exemplos citados neste artigo, descrevemos mais algumas circunstâncias do nosso cotidiano nas quais a eletroquímica entra em ação, são elas:

  • – Reações no corpo humano.
  • – Fabricação de aparelhos eletrônicos.
  • – Carregamento de pilhas e baterias.
  • – Galvanoplastia: revestimento de peças de ferro e aço com zinco metálico, impedindo a ferrugem de materiais.
  • – Dezenas de aplicações na indústria química.

Agora já descobrimos um pouco mais sobre a eletroquímica, que ela estuda as relações entre reações químicas e a corrente elétrica e está muito presente no nosso dia a dia. 

Leia também sobre o eletromagnetismo terrestre. 

Férias escolares com o Museu WEG

Um passeio virtual no Museu WEG com uma convidada especial!

O período das férias escolares chegou, e, como de costume, o Museu WEG preparou algo especial para todo mundo brincar e aprender nessa época do ano. As atividades são virtuais, mas os alunos podem seguir as experiências e replicá-las em casa.

A programação conta com um tour virtual pelo Museu WEG apresentando as salas com uma participação super especial: a Sofia, uma criança que, acompanhada de um profissional, mostrará o Museu de criança para criança.

O objetivo é proporcionar uma visita amigável e o aprendizado sobre eletricidade, eletromagnetismo, história e cultura geral para os pequenos que estão de férias escolares.

Durante o passeio, os alunos podem acompanhar experiências que também podem fazer em casa. São elas: erupção colorida, areia mágica e tornado colorido. Ficou curioso? Então, prepare-se para dar o play e acompanhar essa aventura!

Se você gostou do vídeo compartilhe com sua turma e ajude a espalhar as maravilhas da Ciência e Tecnologia. E, se fizer a experiência na sua casa, poste nas redes sociais e marque o @museuweg. Vai ser um prazer ver as experiências de vocês! 

Continue no blog e confira nossas dicas de leitura e canais para aprender sobre ciência durante as férias.

Supervelocidade: o que aconteceria se alguém corresse tão rápido quanto o Flash?

O que aconteceria se alguém corresse tão rápido quanto o Flash?

O personagem dos quadrinhos The Flash, criado por Gardner Fox e Harry Lampert, é um super-herói que possui uma velocidade sobre-humana. Além de correr com uma incrível velocidade, o herói pode criar vácuo, fazer leituras em supervelocidade, suportar controles telepáticos, criar clones, escalar paredes e andar sobre a água. Já imaginou o que poderia acontecer se você também corresse tão rápido quanto ele? 

Segundo o físico Rhett Allan, que observou vídeos e filmes com o personagem, a estimativa de velocidade do herói deve ser algo em torno de 1.100 km/h, ou aproximadamente 305,5 m/s. Em alguns episódios de filmes ou quadrinhos, Flash já atingiu velocidades muito superiores à da luz. Na vida real, você sabe por que nada pode ir mais rápido que a velocidade da luz?

Surgimento do poder de supervelocidade do Flash

No universo da DC Comics, Barry Allen, formado em química orgânica e criminologia, estava trabalhando em seu laboratório quando um raio acertou a janela. O químico foi atingido pelos destroços e banhado por vários produtos químicos. Aos poucos, ele foi descobrindo que aquele acidente havia lhe dado uma velocidade sobre-humana.

Se por acaso algum dia isso acontecer com você, por motivos que com certeza serão muito estranhos, é importante saber os efeitos e os desafios que a supervelocidade traria para sua vida. Vamos lá?

Efeitos físicos da supervelocidade

Inúmeros efeitos ocorreriam em uma pessoa que atingisse velocidades tão elevadas quanto as atingidas pelo super-herói. Falaremos sobre alguns deles a seguir:

1. Você ficaria sempre descalço

A força de atrito entre nossos pés e o solo é o que nos permite caminhar. Ao empurrar o chão para trás, a força de atrito estabelecida entre o calçado e o solo faz com que a gente vá para frente. Ao correr em uma velocidade tão elevada, o atrito entre o chão e seus pés poderia desintegrar totalmente o material dos seus calçados. 

2. Sairia do planeta com facilidade

Com sua supervelocidade, seria possível atingir a velocidade de escape, ou seja, a mínima velocidade necessária para que um corpo abandone um planeta, algo em torno de 40.000 km/h. Se corresse em qualquer direção com uma velocidade igual ou superior a essa, você poderia ir para o espaço.

3. Viajaria no tempo

Atingindo velocidades próximas à da luz, o herói sofreria os efeitos da dilatação temporal, prevista na Teoria da Relatividade Especial de Einstein. Os objetos que estão em velocidades muito altas marcam intervalos de tempo mais baixos que os que estão em repouso.

Ou seja, caso corresse com 99% da velocidade da luz, um ano de corrida para você corresponderia a sete anos para alguém que estivesse parado. Ao atingir o repouso, você estaria sete anos no futuro!

4. Precisaria de uma aura antiatrito

A supervelocidade seria muito perigosa se não viesse acompanhada de uma aura antiatrito. Isso porque, quanto mais rápido estamos correndo, maior é a força de resistência do ar. No caso de correr como o super-herói, o ar poderia se tornar o grande vilão do seu principal poder. 

A medida que uma pessoa corre, ela empurra o ar à sua frente fazendo-o condensar em uma massa de ar cada vez mais densa. Com velocidades muito altas, o ar se tornaria quase como uma parede, o que faria qualquer pessoa comum ser completamente esmagada por ele.

A explicação para isso não acontecer com o Flash, segundo os editores, é que ele possui uma aura anti-atrito, que cria uma espécie de blindagem aerodinâmica, impedindo que ele sofra qualquer dano com a força do ar.

***

O poder do Flash é realmente fascinante e desafia algumas leis da ciência, em particular da física. Aparentemente, um banho de produtos químicos e a aquisição de uma supervelocidade não seriam o suficiente para sairmos correndo próximo a velocidade da luz por aí. Ah, se você tiver supervelocidade, evite abraçar pessoas quando estiver em alta velocidade, a força do atrito poderia arrancar algum membro dela… Vá com calma!

Já que o assunto é velocidade, que tal aprender sobre aceleradores de partículas e o que eles fazem? 

Por que o navio não afunda?

Por que o navio fica sob a superfície da água e não vai para o fundo do mar?

Um carro, um avião ou até mesmo uma pessoa que não sabe nadar afundam. Mas então por que o navio fica sob a superfície da água e não vai para o fundo do mar? Descobrir o funcionamento das coisas é uma de nossas paixões, assim como já desvendamos o funcionamento do helicóptero, hoje vamos desvendar o funcionamento de um navio.

Para nosso entendimento, podemos começar fazendo um experimento com uma bolinha de gude: se você colocá-la num recipiente com água vai ver que, mesmo sendo tão pequena, ela vai direto para o fundo. O mesmo acontece com uma bolota de massinha: vai direto para o fundo. Mas se a gente achatar a bolota de massinha e moldar igual a um barquinho ela flutua! E podemos até mesmo colocar a bolinha de gude dentro da massinha, ela vai afundar um pouquinho, mas continuar flutuando, mesmo com este peso a mais.

Por que isso acontece?

A bolinha de gude e a bolota de massinha afundam porque são mais pesadas que a água que está no mesmo lugar que elas ocupam. Mas ao fazer um barquinho de massinha ela se torna mais leve do que a água que estava naquele lugar, mesmo carregando a bolinha de gude. Ao ser colocado na água, o objeto desloca a água para o fundo e para os lados. A água deslocada exerce uma força sobre o corpo, empurrando-o para cima, tentando, desta forma, voltar ao lugar que ocupava. É esta força que impede que o navio afunde. Mas para isso, ele precisa afundar o suficiente para que a força da água deslocada permita que ele flutue.

Por que a bolinha afunda e o barquinho não?

O formato do barco ajuda a manter o equilíbrio e a compensar a pressão. Quando ele está na água, vazio, boa parte do casco fica para fora da água. Conforme vai recebendo peso, o casco vai afundando. Assim, se tiver peso demais em cima do barco, o peso não ficará igual à pressão e vai acabar afundando. Por isso é preciso distribuir bem o peso e conhecer o limite do navio. 

O local onde acontece a flutuação também é importante, já que nem toda água é igual. A salgada, por exemplo, é mais densa e ajuda a flutuar mais que a água doce (como dos rios, lagos e até da piscina). Apesar de ser um diferença pequena, cerca de 3%, os sais dissolvidos na água ajudam o barco a flutuar. É o que chamamos de densidade da água: quanto mais densa, quanto mais salgada no caso do mar, maior sua flutuabilidade. 

Eureka!

O matemático grego Arquimedes foi a primeira pessoa que respondeu de maneira correta a esta pergunta sobre o navio. Ele foi o maior matemático da antiguidade e exercia muitas outras atividades, entre elas estava a curiosidade a respeito dos fenômenos da natureza.

Há uma lenda diz que ao tomar banho numa bacia, Arquimedes teve a inspiração para explicar a ação da água sobre os corpos nela colocados. Entusiasmado, levantou da bacia e saiu gritando pelas ruas “— Eureka!”, uma palavra grega que em português significa “Achei!”. 

Construir uma grande embarcação é uma tarefa complexa

Construir e projetar uma embarcação de grande porte é uma tarefa complexa. A WEG experimentou essa complexidade ao fornecer equipamentos, como geradores e motores elétricos para uma embarcação de dragagem marítima de 15.000 m³, Bonny River.

Além do formato do casco que vimos acima, um navio necessita de motores para que os propulsores de proa e popa funcionem e ele se movimente. Alguns dos maiores motores do mundo são responsáveis por moverem grandes embarcações. A WEG busca oferecer mais eficiência e sustentabilidade para esses projetos. Você pode ler mais sobre o assunto clicando aqui.

Como funciona o helicóptero?

Descubra como funciona a aeronave mais versátil e amplamente utilizada no mundo.

Podemos dizer que o helicóptero é um avião com asas móveis: as hélices (que também chamamos de rotor). E, diferentemente do avião, que só se desloca para a frente, ele pode pairar no ar, fazer manobras suaves para qualquer direção e até andar de ré, porque suas pás estão sempre em movimento. Para que esse tipo de manobra saia bem, não é nada simples, já que a tendência natural do impulso provocado pela rotação das hélices (o chamado torque) seria fazer a nave sair rodopiando como um pião. É por isso que existe uma segunda hélice que gira em pé e produz uma força lateral: para contrabalancear o rotor da cauda e deixar seu “corpo” parado enquanto as hélices giram.

Como funcionam as hélices do helicóptero?

  1. As lâminas têm a forma de perfis aéreos (asas de avião com perfil curvo), de modo que geram elevação ao girar.
  2. Cada lâmina pode girar sobre uma dobradiça emplumada.
  3. Os links verticais  empurram as lâminas para cima e para baixo, tornando-os giratórios. Os links de passo movem-se para cima e para baixo, de acordo com o ângulo das placas swash.
  4. O mastro do rotor (um eixo central conectado ao motor pela transmissão) faz girar todo o conjunto da lâmina.
  5. A tampa do cubo do rotor (acima dos rotores) ajuda a reduzir o arrasto aerodinâmico.
  6. Existem dois motores turbo-eixo, um em cada lado dos rotores. Se um motor falhar, ainda deve haver energia suficiente do outro motor para aterrar o helicóptero com segurança.

Por que o helicóptero não sai rodopiando?

“Para toda ação, sempre há uma reação oposta de mesma intensidade.” A Terceira Lei de Newton pode ser aplicada de forma simples no funcionamento de um helicóptero. 

Seguindo a lei, quando a hélice principal começa a girar (ação), a fuselagem tende a girar em igual intensidade no sentido oposto (reação). Essa força é conhecida como torque.

Para combater essa reação, Igor Sikorsky, o criador do helicóptero, teve a genialidade de instalar uma hélice na cauda da nave, que também fornece controle direcional. O funcionamento da hélice da cauda é semelhante ao da principal, exceto que elas podem ser inclinadas. O movimento da hélice na cauda evita que o torque comprometa o voo da aeronave, fazendo com que o piloto tenha condições necessárias para fazer movimentos de emergência.

A aeronave mais versátil e amplamente utilizada no mundo

Ao longo dos anos, as inovações em design de helicópteros tornaram as máquinas mais seguras, mais confiáveis ​​e fáceis de controlar. Por possuírem atributos diferentes do avião, por exemplo, eles podem ser utilizados em áreas congestionadas ou isoladas em que as aeronaves de asa fixa não seriam capazes de pousar ou decolar. A capacidade de pairar por longos períodos de tempo e de decolagem e aterragem vertical permite aos helicópteros realizar tarefas que outras aeronaves não são capazes.

Por isso, hoje, os helicópteros são utilizados para fins militares e civis, como transporte de tropas, apoio de infantaria, combate a incêndios, resgates, operações entre navios e equipes entre plataformas petrolíferas, transporte de empresários, evacuações sanitárias, guindaste aéreo, polícia e vigilância de civis, transporte de bens etc.

Fonte: Canal Piloto

A relação entre música, física e matemática

Nesse texto vamos explicar um pouquinho sobre essa antiga relação.

A matemática e a música estão naturalmente presentes no nosso dia a dia, são tantas atividades cotidianas movidas pelo som e pelos cálculos, que não nos damos conta da sua presença. A relação entre as duas áreas vai muito além dos verbos — contar e cantar —, nesse texto vamos explicar um pouquinho sobre essa antiga relação, para se ter uma ideia, os gregos, no século VI a.C. consideravam que a música encerrava uma aritmética oculta.

Para entender melhor, vamos ver alguns conceitos básicos da música:

 

Música

Chamamos de “acordes” três notas executadas simultaneamente em um instrumento musical. Os acordes são divididos em consonantes ou dissonantes, sendo que os primeiros são normalmente aprendidos antes de tudo, e os segundos, são usados por instrumentistas que já possuem mais conhecimento, prática e técnicas avançadas. Os acordes consonantes são agradáveis aos ouvidos e são suficientes para executar qualquer música, já os dissonantes parecem fora de combinação melódica, são mais complexos e enriquecem a composição.

 

A relação com a matemática

A matemática é utilizada pelos estudiosos da música como uma forma de facilitar suas teorias a respeito da estruturação musical, além de comunicar novas maneiras de ouvir música. Da matemática, são usadas na música, a teoria dos conjuntos, a álgebra abstrata e a teoria dos números. Para compreender essa relação, imagine que compositores já utilizaram em seus trabalhos as escalas musicais, a proporção áurea e o número de Fibonacci.

Uma relação muito antiga.

Apesar de terem ligação, a matemática e a música são estudadas de maneira separada há muito tempo, mas sempre tiverem uma relação entre si. As escalas musicais foram expressadas de maneiras diferentes, variando de acordo com os povos. Filósofos como Erastóstones e Pitágoras, por exemplo, criaram escalas e formas de organizá-las, já os gregos faziam essas escalas baseadas nos tetracordes, com sete tons. Com os filósofos, a afinação que usava recursos de quinta passou a ser utilizada, além de usar os números entre 1 e 4 para gerar as notas de uma escala.

Além disso, quando falamos em ritmo musical, estamos associando o ritmo ao tempo e suas divisões, além das frequências, sons e timbres. Chamamos de compassos os períodos que se repetem dentro de uma música – ou seja, são tempos que se repetem. Você pode assistir ao documentário abaixo para entender essa relação de uma forma simples e didática:

“O primeiro experimento científico da matemática foi numa arte: a música.” 

 

A física na música

É a frequência do som que define uma nota musical. Essa frequência é uma repetição com referência de tempo. Por exemplo, imagine uma roda de bicicleta girando, se essa roda completa uma volta em 1 segundo, dizemos que a frequência da roda é “uma volta por segundo”, ou “um Hertz”. Hertz é o nome dado para representar a unidade de frequência, geralmente aparece abreviado como “Hz”. Se essa roda, por exemplo, completasse 10 voltas em 1 segundo, sua frequência seria 10 Hertz (10 Hz).

Bem, e o que isso tem a ver com a música? É que o som é uma onda e essa onda oscila com certa frequência. Se uma onda sonora completa uma oscilação em 1 segundo, sua frequência é de 1 Hz. Se ela completa 10 oscilações em 1 segundo, sua frequência é de 10 Hz. Para cada frequência há um som diferente (uma nota diferente). A nota Lá, por exemplo, corresponde a uma frequência de 440 Hz.

Quando uma frequência é multiplicada por 2, a nota permanece a mesma. Por exemplo, a nota Lá (440 Hz) multiplicada por 2 é 880 Hz, que continua sendo uma nota Lá, mas uma oitava acima. Se o objetivo é baixar uma oitava, bastaria dividir por 2. Ou seja, uma nota e sua respectiva oitava mantêm uma relação de ½.

 Na Grécia Antiga, Pitágoras fez descobertas muito importantes para a matemática (e para a música). Por exemplo, ele descobriu que ao esticar uma corda, prendê-la nas suas extremidades e tocá-la, faz com que ela vibre. Até aí, bem simples, né?

corda1

Ele também decidiu dividir essa corda em duas partes e tocou cada extremidade novamente. O som produzido era exatamente o mesmo, só que mais agudo (pois era a mesma nota uma oitava acima):

 

 corda2

 

Mas Pitágoras continuou seu experimento. Decidiu analisar como ficaria o som se a corda fosse dividida em 3 partes:

corda3

Um novo som surgiu, diferente do anterior. Pitágoras percebeu que não era a mesma nota uma oitava acima, mas uma nota diferente, que precisava receber outro nome. Apesar de ser diferente, o som combinava com o anterior, criando uma harmonia agradável ao ouvido.

Assim, ele continuou fazendo subdivisões e foi combinando os sons matematicamente criando escalas que, mais tarde, estimularam a criação de instrumentos musicais capazes de reproduzir essas escalas.

Muitos povos criaram suas próprias escalas musicais. O povo chinês, por exemplo, partiu da experiência de Pitágoras (utilizando cordas): eles tocaram a nota Dó em uma corda esticada e depois dividiram essa corda em 3 partes, como acabamos de mostrar. O resultado dessa divisão foi a nota Sol.

Ao observar que essas notas possuíam uma harmonia entre si, eles repetiram o procedimento a partir dessa nota Sol, dividindo novamente esse pedaço de corda em 3 partes, resultando na nota Ré, que deu origem à nota Lá, em seguida à nota Mi.

Ao repetir esse procedimento de dividir a corda em 3 partes, deu-se origem à nota Si, porém ela não soava muito bem quando tocada junto com a nota Dó (a primeira nota do experimento). As duas notas eram muito próximas uma da outra, causando certo desconforto sonoro. Por isso, os chineses terminaram suas divisões obtendo as notas Dó, Sol, Ré, Lá e Mi, deixando a nota Si de lado.

Foram essas notas que serviram de base para a música chinesa, formando uma escala de 5 notas (pentatônica). A escala pentatônica é agradável e consonante, representando muito bem a cultura oriental, que sempre foi pautada na harmonia e estabilidade.

Existem muitas outras explicações matemáticas para a construção da música, elas entram em assuntos mais avançados que necessitam um alto conhecimento matemático, como séries de Fourier e função Zeta de Riemann.

O que podemos entender é que música trabalha matematicamente, sendo resultado de uma organização numérica. E nosso cérebro é responsável por interpretar tudo isso. Nosso cérebro gosta de lógica, harmonia, gosta cálculos! Quanto mais você praticar, estudar e conhecer música, mais essa faculdade se desenvolve. =)

Por que nada pode viajar mais depressa que a luz?

Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.

Você já deve ter ouvido que nada é capaz de viajar mais rápido que a velocidade da luz. Mas, por um breve momento, acreditou-se que sim.

A teoria de que nada pode viajar mais rápido do que a velocidade da luz no vácuo significa, basicamente, que nada pode ultrapassar os 299.792.458 metros por segundo ou arredondando, 300 mil km por segundo. Essa ideia foi proposta por Albert Einstein em sua Teoria da Relatividade, baseada em estudos anteriores de diversos cientistas para estabelecer que o limite de velocidade universal é o que a luz atinge quando se desloca pelo vazio do cosmos. Você sabe por quê?

 

Impossibilidade física

Isso nos leva à Teoria da Relatividade Especial de Albert Einstein, de 1905, que diz que a velocidade da luz é o que conecta o tempo e o espaço. Segundo o catedrático de Física Antonio Ruiz de Elvira, não é possível deslocar um objeto a uma velocidade superior à da luz porque, de forma simples e resumida, a única coisa capaz de mover uma partícula com massa é outra força que viaje a essa velocidade.

Zunindo pelo vácuo (BBC)

De acordo com Antonio, o objeto “empurrado” acabaria ganhando massa quando submetido a grandes velocidades. E, considerando que o ganho aumentaria bastante conforme o corpo se aproximasse da velocidade da luz, isso interferiria em sua capacidade de deslocamento. Sendo assim, nenhum corpo pode viajar mais depressa do que a força que o empurra.

Segundo o que prevê a Teoria da Relatividade, o aumento de massa aconteceria rapidamente conforme a velocidade do objeto se aproximasse à da luz. E, quanto mais próximo desse limite o corpo chegasse, considerando que o ganho de massa aumentaria infinitamente, seria necessária uma força — também — infinita para que o objeto se elevasse à velocidade da luz.

A famosa equação de Einstein tem uma parte “menos lembrada”, que descreve como a massa de um objeto muda quando há movimento envolvido: E = mc² (Energia é igual a massa vezes a velocidade da luz ao quadrado). Na verdade, a equação completa é E²=(mc²)²+(pc)². A parte final é a que descreve como a massa do objeto muda quando há movimento envolvido.

 

Teoria ameaçada

Em 2011, foi anunciada uma descoberta que ameaçou anular tudo o que sabemos sobre a velocidade da luz, a Teoria da Relatividade e a física moderna!

Isso aconteceu na Suíça, quando físicos europeus conduziram um experimento chamado Oscillation Project with Emulsion-tRacking Apparatus (Opera, na sigla em inglês), para estudar o fenômeno da oscilação de neutrinos. Diferentemente das partículas de luz, os neutrinos são partículas que possuem uma pequena quantidade de massa. Por isso, segundo a Teoria da Relatividade Especial de Einstein, deveriam viajar a uma velocidade menor que a da luz.

No entanto, naquele ano, o projeto chamou a atenção de toda a comunidade internacional quando anunciou a detecção de neutrinos se movimentando em uma velocidade superior à da luz, o que poderia revolucionar a Física moderna.

No entanto, tudo não passou de um mal entendido por causa de um cabo de um relógio digital em um laboratório, que estava mal conectado. Quando alguém percebeu e o conectou corretamente, tudo voltou à normalidade e ficou comprovado que os neutrinos estavam viajando a uma velocidade mais baixa que a da luz.

Toda a Física moderna foi questionada, portanto, por causa de um cabo de fibra ótica solto, que fez com que a passagem do tempo fosse registrada de maneira incorreta. Acredita?

Mas é assim que a ciência funciona e deve funcionar. Cientistas cometem erros e aprendem com eles. É preciso provas muito fortes para mudar os rumos da Física, e é a partir de testes, experimentações, erros e acertos que isso é possível — mesmo que leve séculos.

6 mistérios que a física ainda não conseguiu explicar

Cientistas criaram teorias para entender e até tentar explicar alguns mistérios do universo, mas até hoje nada foi comprovado. Será que um dia teremos respostas para eles?

Assim como nós, os físicos, astrofísicos e cientistas estão cheios de perguntas. E, apesar dos avanços nestes campos, há mistérios que ainda são impossíveis de serem explicados. Para tentar entender certos fenômenos, foram estabelecidas teorias que, mesmo não podendo ser observadas ou comprovadas diretamente, são a única explicação para definir alguns enigmas do universo. Conheça a seguir alguns deles.

 

  1. A matéria escura

Cientistas calculam que 84% da matéria presente em nosso universo não emite e sequer absorve luz, a chamada matéria escura. Por não absorver nem emitir radiação, ela não pode ser vista diretamente, nem detectada de maneira indireta.

Eles acreditam na existência dessa matéria graças ao efeito gravitacional que exerce sobre outros elementos e sobre a estrutura do universo. Acredita-se que é composta por partículas massivas que interagem sem força entre elas e, por carecer de luz, os astrofísicos não conseguem detectá-la, apesar de saber que está ali.

  1. A energia escura

Cientistas acreditam que há algo que contraria a força gravitacional de atração e, mesmo que a gravidade empurre tudo para o centro do nosso universo, ele continua em expansão.

A gravidade deveria evitar que isso acontecesse, mas na prática é diferente. Para explicar isso, sugere-se que exista uma energia invisível que se contrapõe à força da gravidade — a energia escura. Ela é tida como uma propriedade inerente do próprio espaço. À medida que o espaço se expande, mais espaço é criado e, consequentemente, mais energia escura.

Porém, também não é possível detectar a energia escura e os cientistas não conseguem comprovar sua existência, mas essa é a única explicação que existe até hoje. E mais: embora ninguém saiba como constatar, estima-se que 70% do universo é composto por energia escura!

 

  1. A inflação cósmica

A inflação cósmica é um conjunto de teorias concedida para explicar alguns enigmas que a teoria do Big Bang não podia responder. Diz-se que com a inflação cósmica, houve partes do universo que ficaram mais densas em matéria, e isso explicaria as galáxias e outros fenômenos.

Ao olharmos para o universo, observamos uma esfera que parece se estender por partes iguais em todas as direções. O que torna difícil a explicação de haver uma temperatura uniforme: como duas partes distantes do universo podem ter a mesma temperatura e densidade sem ter estado em contato? A inflação cósmica explica esse fenômeno.

A teoria sugere que essas partes chegaram a formar uma unidade e que, menos de um bilionésimo de segundo depois do Big Bang, o universo se inflou de forma repentina e em grande velocidade, expandido sua matéria a uma velocidade superior à da luz. Durante essa expansão, houve pequenas diferenças de temperaturas, pontos de maior densidade que se materializaram em galáxias e grupos de galáxias. Também foram produzidas as ondas gravitacionais previstas por Albert Einstein.

Apesar deste conhecimento, os físicos não podem atestar o que formou esses conjuntos de estrelas e ondas gravitacionais. Portanto, um fenômeno como a inflação cósmica pode fazer com que seja mais compreensível.

  1. O destino do universo

“Para onde vamos?” Essa é uma das perguntas científicas que mais causam curiosidade e outras perguntas até hoje. Acredita-se que isso depende de um fator desconhecido que mede a densidade da matéria e a energia que existe no cosmos.

Considerando que esse fator é maior que a unidade, o universo seria uma esfera. Sem a energia escura mencionada antes, o universo deixaria de se expandir e tenderia a se contrair, provocando o colapso absoluto, num processo inverso ao Big Bang, conhecido também como Big Crunch. Mas, como essa energia existe, os cientistas acreditam que o universo seguirá se expandindo de maneira infinita.

Mas o universo se expandirá para sempre? Considerando-o como uma esfera e caso a energia escura exista de fato, esse universo esférico se expandirá eternamente.

De maneira alternativa, o universo pode ser curvo e aberto, como a superfície de uma sela para montar cavalos. Neste caso, o universo pode caminhar para dois processos — o Big Freeze e Big Rip. No primeiro, a aceleração do universo fará com que ele acabe desfazendo galáxias e estrelas, deixando matéria fria e abandonada. Depois, a aceleração aumentaria de maneira tão grande, que poderia superar a força que mantém os elementos de um átomo em seus devidos lugares, destruindo-o completamente.

Outra alternativa é que o universo pode ter uma estrutura planar, como uma mesa que se expande para todas as direções. Caso a energia escura não exista, neste modelo a aceleração da expansão do universo seria reduzida aos poucos, até parar completamente. Mas se a energia escura existir, tudo terminaria destruído com o Big Rip.

 

  1. A entropia

Você sabia que alguns cientistas duvidam que o tempo tenha corrido sempre para a frente, mas não conseguem provar o contrário? Isso é explicado por uma propriedade da matéria chamada entropia, que é a quantidade de desordem de um sistema. Neste caso, das partículas do universo.

Basicamente, se o universo se desloca de uma baixa entropia para uma alta entropia, nunca poderemos ver os acontecimentos se reverterem. Esse movimento é irreversível, mas suscita um novo enigma para os cientistas: por que o universo era tão organizado em seu início? Se, como confirmado em outras teorias, havia uma grande quantidade de energia acumulada em um espaço tão reduzido, por que a entropia (a desordem) era tão baixa na origem do cosmos? Ainda não há resposta para isso.

 

  1. Os universos paralelos

Será que o universo em que vivemos é único? Até hoje, nada garante isso. Muitos cientistas defendem a hipótese de que é possível que o que chamamos de universo seja somente um entre outros infinitos espaços.

As leis da física quântica dizem que a configuração das partículas dentro de cada espaço é finita e que esta configuração deve, necessariamente, se repetir, o que implicaria em uma infinidade de universos paralelos. É daí que vem o conceito de multiverso, ou seja, diversos universos paralelos coexistindo sem que um tenha contato com o outro.

Da matéria escura aos universos paralelos: são tantos questionamentos! Que a ciência esteja sempre em evolução e que possamos presenciar a solução desses mistérios. <3

O que é e como funciona a energia solar fotovoltaica?

A energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos.

Você já parou para pensar que o Sol é o principal responsável pela origem de diversas fontes de energia? Através dele se dá a evaporação, fase inicial do ciclo das águas, que permite a geração de energia através das hidrelétricas, o Sol também permite a circulação atmosférica por todo o mundo, originando os ventos, outra fonte energética.

Já a energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos, porém quanto maior for a radiação solar, maior será  a quantidade de eletricidade produzida. A energia provinda do sol é inesgotável, uma excelente fonte de calor e luz e uma das grandes alternativas energéticas para o futuro.

Procurando por fontes de energia em locais remotos e isolados, praticamente sem rede elétrica, o desenvolvimento e investimento em energia solar começou em empresas do setor das telecomunicações. A tecnologia também foi logo utilizada para as missões no espaço

A energia fotovoltaica pode oferecer solução para diversas necessidades: desde ligar uma simples lâmpada de um poste de iluminação, até oferecer uma alternativa de produção de energia para uma casa ou mesmo uma grande usina solar, produzindo energia para milhares de famílias.

 

Como é produzida a energia solar

O processo de conversão da energia solar somente é possível graças ao efeito fotovoltaico, (composto por células normalmente feitas de silício ou outro material semicondutor). Assim, quando a luz solar incide sobre uma dessas células fotovoltaicas, os elétrons do material semicondutor são postos em movimento e geram eletricidade.

O efeito fotovoltaico, muito resumidamente, foi identificado por Edmond Becquerel em 1839, e significa o aparecimento de uma diferença de potencial nos extremos de uma estrutura de material semicondutor, que se deve à absorção da luz!

 

Entendendo a esquemática da energia solar fotovoltaica:

1) Os fótons da energia solar atingem as células fotovoltaicas, fazendo com que alguns dos elétrons que circundam os átomos se desprendam.

2) Estes elétrons livres vão migrar, através da corrente eléctrica, para a parte da célula de silício que está com ausência de elétrons.

3) Durante o dia todo, os elétrons irão fluir em uma direção constantemente, deixando átomos e preenchendo lacunas em átomos diferentes. Este fluxo de elétrons cria uma corrente elétrica, ou seja, a Energia Solar Fotovoltaica.

A potência gerada através dessa esquemática é enviada para o inversor — equipamento que converte a energia para os padrões da rede concessionária (corrente alternada). Depois disso, a energia é injetada na rede elétrica da residência, pronta para ser utilizada pelo consumidor.

 

 

sistema-de-microgeraçãoDiagrama esquemático do sistema fotovoltaico. Fonte: luzsolar.com.br

 

O mercado da energia fotovoltaica

Mais de 100 países já utilizam energia solar fotovoltaica. Os mercados que mais crescem são China, Japão e Estados Unidos, enquanto a Alemanha é o país que mais a produz, a energia provinda do sol é responsável por 6% da sua demanda de eletricidade. A energia solar fotovoltaica é agora, depois de hidráulica e eólica, a terceira mais importante fonte de energia renovável em termos de capacidade instalada a nível mundial.

Entre as vantagens na utilização da energia solar fotovoltaica estão: energia limpa; pode ser instalada em qualquer lugar; sistema silencioso; fonte inesgotável; sistema confiável; baixa manutenção; fácil instalação; é modular, pode ser ampliado conforme necessidade.

A energia fotovoltaica há muito tempo é vista como uma tecnologia de energia limpa e sustentável, que se baseia na fonte renovável de energia mais abundante e amplamente disponível no planeta – O SOL. Se você quer saber mais sobre fontes de energia renováveis, leia nosso artigo sobre a matriz energética no Brasil. 🙂

 

Marie Curie: quem foi a primeira mulher a ganhar um prêmio Nobel

Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

Em uma época onde apenas os homens podiam ir à universidade, Marie Curie descobriu um elemento químico e iniciou uma verdadeira revolução no meio científico. Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

E não é “apenas” isso. Naquela época, como mulher, Marie Sklodowska Curie precisou enfrentar muitas dificuldades para alcançar seus sonhos, e apesar de todo o preconceito da sociedade foi pioneira por sua coragem, determinação e descobertas científicas, ela não foi só a primeira mulher a ganhar um Nobel em Ciências, como foi a primeira pessoa a receber o prêmio duas vezes.

Encorajada pelo pai a se interessar pela ciência, a polonesa terminou os estudos aos 15 anos e passou a trabalhar como professora. Como o governo russo proibia que mulheres frequentassem universidades dentro de seu império, para continuar os estudos, Marie mudou-se para Paris.  Em 1883, graduou-se bacharel em Física e Matemática pela Universidade de Sourbonne, tornando-se, mais tarde, a primeira mulher a lecionar nessa importante instituição de ensino europeia. Depois de formada, foi a primeira classificada para o mestrado em Física e, no ano seguinte, a segunda para o mestrado em Matemática.

Em 1894, Marie conheceu o professor Pierre Curie com o qual se casou no ano seguinte, e passou utilizar o sobrenome Curie. Na época Pierre trabalhava no Laboratório de Física e Química Industrial no qual trabalharam juntos mais tarde.

Em julho de 1898, o casal conseguiu isolar um elemento 300 vezes mais ativo que o urânio. Em homenagem à sua terra, Marie batizou-o de polônio. Mas os Curie não estavam satisfeitos, porque o resto do material, depois de extraído o polônio, era ainda mais potente. Continuaram a purificação e cristalização e encontraram um novo elemento, 900 vezes mais radioativo (termo criado por Marie) que o urânio. Estava descoberto o “rádio”.

Durante a Primeira Guerra Mundial, Marie encabeçou a implementação de um sistema de radiografia móvel — um veículo que tinha uma máquina de raios-X e equipamento fotográfico de câmara escura — ajudando no tratamento de milhões de soldados. Além disso, também contribuiu para a ciência ao aprisionar o gás que emanava do elemento rádio e enviar os tubos para o tratamento do câncer em hospitais do mundo inteiro.

“Eu faço parte dos pensam que a Ciência é belíssima. Um cientista em um laboratório não é apenas um técnico, ele é também uma criança diante de fenômenos naturais que o impressionam como um  conto de fada. Não podemos acreditar que todo progresso científico se reduz a mecanismos, máquinas, engrenagens, mesmo que essas máquinas tenham sua própria beleza”. Marie Curie

 

Prêmio Nobel

Seu primeiro Prêmio Nobel foi em 1903, dividido com seu marido Pierre Curie e o físico Henri Becquerel — pelas pesquisas sobre radiação.

Em 1904, Pierre foi nomeado professor da Sorbonne e Marie assumiu o cargo de assistente-chefe do laboratório dirigido por seu marido. Em 1905 Pierre Curie foi eleito para a Académie des Sciences. Dois anos depois Pierre Curie morreu tragicamente, vitimado por um atropelamento e Marie foi indicada para substituí-lo, tornando-se a primeira mulher a ocupar uma cadeira de professor na Sorbonne, e a primeira mulher a ocupar tal cargo na França.

Marie continua a estudar a radioatividade, principalmente suas aplicações terapêuticas e, em 1911, foi agraciada com o segundo Prêmio Nobel, desta vez de Química, por suas investigações sobre as propriedades do rádio e as características dos seus compostos. Tornou-se a primeira personalidade a receber duas vezes o Prêmio Nobel.

 

Morte

Em 4 de julho de 1934, Marie Curie faleceu perto de Sallanches, na França. Seus órgãos vitais estavam comprometidos devido à constante exposição à radioatividade sem nenhuma proteção.

Inspirada pela mãe, a filha de Marie, Irène Joliot-Curie, trabalhou com o marido Frédéric Joliot nos campos da estrutura do átomo e física nuclear, demonstrando a estrutura do nêutron e descobrindo a radioatividade artificial, feito este que rendeu mais um Prêmio Nobel para a família Curie.

A história de Marie rendeu muitos materiais audiovisuais. Para conhecer um pouco mais dessa fantástica história, o Museu WEG separou dois vídeos: o documentário “Marie Curie: A Mãe da Radiação” e o filme “Marie Curie na Guerra”, de 2014. Ambos disponíveis no Youtube. Assista:

https://www.youtube.com/watch?v=dhQsU0QDYew

***

Além de um ícone da ciência, Marie Curie também foi uma heroína de guerra e uma grande inspiração para que mais mulheres continuem seus estudos nos campos científicos. Que seu legado continue inspirando novos e novas cientistas no mundo todo! 🙂