Categoria: Tecnologia

Antimatéria: história e curiosidades

Assim como o nome sugere, a antimatéria é o inverso da matéria. Mas o que isso quer dizer?

Assim como o nome sugere, a antimatéria é o inverso da matéria. Cada partícula elementar que conhecemos possui uma partícula oposta que apresenta exatamente as mesmas características, exceto a carga elétrica, que é inversa. O pósitron, por exemplo, é a antimatéria do elétron, portanto, possui a mesma massa, mesma rotação, mesmo tamanho, mas carga elétrica de sinal oposto.

materia-e-antimateria

Matéria e antimatéria, constituídas de antipartículas.

Tudo o que se sabe sobre essas antipartículas vem de experiências realizadas em aceleradores de partículas, que apresentam antipartículas como produto. Dentro desses imensos laboratórios, a dificuldade de produzir e analisar a antimatéria está no fato de que, no encontro da matéria com a antimatéria, sempre ocorre aniquilação, ou seja, uma destrói a outra, gerando uma grande quantidade de energia.

 

Descoberta

A história da antimatéria começa em 1928, quando o físico britânico Paul Andrien M. Dirac revisou a equação da equivalência entre massa e energia proposta por Einstein e propôs que as partículas podem ter valores negativos de energia. Ou seja: que um elétron poderia emitir radiação infinitamente, ficando cada vez com energias mais negativas, o que não é aceitável do ponto de vista físico. 

Para consertar esta inconsistência do seu modelo, Dirac argumenta que todos os estados relacionados a energias negativas estão ocupados, assim uma partícula não poderia ir para um estado de energia negativa, isto ficou conhecido como Mar de Dirac. Uma consequência do mar de Dirac é que o consideramos como vácuo não é vazio, existe uma infinidade de partículas nos estados de energia negativa.

Logo, para Dirac, uma antipartícula nada mais é do que um espaço vago no Mar de Dirac, assim um elétron pode perder energia emitindo radiação e indo pro estado quântico vago descrito pelo antielétron. Um observador veria um elétron colidindo com um antielétron, depois da colisão ambos desapareceriam e a energia seria emitida na forma de radiação.

Em 1932,  um ano após a previsão de Dirac, Carl Anderson detectou a presença de elétrons positivos durante um experimento com raios cósmicos. O antielétron detectado foi chamado de pósitron e tem as mesmas características do elétron, mas apresenta carga elétrica de sinal positivo. Em 1955, cientistas criaram o antipróton por meio de um acelerador de partículas. Desde então, os estudos relacionados com antimatéria vêm revelando antipartículas de nêutrons, quarks, léptons etc.

 

Como produzir antimatéria?

A antimatéria existe de maneira natural, porém em pequeníssimas quantidades. É o caso da banana, por exemplo, que emite um pósitron a cada 75 minutos, pois possui em sua composição química um isótopo radioativo de potássio (40K) que sofre decaimento β+, mas como o nosso universo é feito predominantemente de matéria, rapidamente este pósitron encontra um elétron e eles se aniquilam, sobrando somente radiação.

Hoje os cientistas são capazes de produzir antimatéria nos aceleradores de partículas, como o famoso LHC. Nessas máquinas de incrível complexidade, feixes de partículas e/ou antipartículas são lançados em anéis circulares ou retilíneos e são colididos com outros feixes. Essas colisões, quando feitas com energia suficiente, recriam as condições do universo no Big Bang. 

lhc10

LHC: o maior acelerador de partículas do mundo.

Ao acelerar átomos a altíssimas velocidades com um acelerador de partículas, elas podem ser colididas com um determinado alvo. As antipartículas resultam dessa colisão e são separadas pela ação de campos magnéticos. Em média, a cada 10.000 colisões de prótons é gerado um antipróton, é isto que torna a produção de antimatéria tão cara.

 

Antimatéria como fonte de energia

Ao pensar nas possíveis aplicações que podem surgir da pesquisa em antimatéria, podemos citá-la como uma fonte de energia compacta.

Já falamos que ao encontrar matéria, a antimatéria é aniquilada. Nesta aniquilação é liberada uma grande quantidade de energia. Quanta energia? Essa reação é o único processo que converte 100% da massa de uma partícula em energia, lembrando da famosa equação de Einstein, E=mc², tem muita energia armazenada na massa das partículas que normalmente não pode ser acessada.

A aniquilação de um grama de antimatéria com um grama de matéria resultaria na liberação de 50 GWh de energia, o suficiente para manter uma lâmpada de 100 W acesa por mais de 57 mil anos!

Essa energia pode ter uma aplicação valiosa para exploração espacial, pois uma boa parte do problema que temos ao lançar um foguete ao espaço é o combustível necessário para sair da atmosfera da Terra. Para isso acontecer ainda é preciso melhorar a eficiência da produção de antimatéria, baratear o processo, desenvolver novas tecnologias de armazenamento e aprender a controlar o uso desta energia, caso contrário teríamos apenas uma bomba poderosíssima! :O

Condutor elétrico: a importância do cobre nas instalações elétricas

A principal razão para utilizar o cobre em sistemas elétricos é sua excelente condutividade elétrica.

Todo material que permite a passagem da corrente elétrica com grande facilidade — quando está submetido a uma diferença de potencial elétrico — é chamado de condutor. É o caso do cobre, graças às suas propriedades únicas, ele ajuda as instalações elétricas a se tornarem eficientes, duráveis e seguras.

Existem diversos materiais que podem ser utilizados como condutores elétricos. Mas, para se tornar um candidato sério para a posição, o material deve combinar condutividade muito alta com suas características mecânicas. É aí que entra o cobre, a principal razão para utilizá-lo em sistemas elétricos é sua excelente condutividade elétrica.

O cobre apresenta a resistência elétrica mais baixa entre todos os metais não-preciosos. Fios e cabos de cobre são capazes também de reduzir as perdas de energia e contribuir para a baixa de emissão de CO2. O metal possui grande resistência contra a deformação e a corrosão, o que aumenta a vida útil e a segurança dos produtos aplicados nas instalações elétricas.

A quantidade de eletricidade que utilizamos hoje em dia, exige que o cabeamento elétrico de nossos lares se encontre em ótimas condições, para evitar falhas e sobrecargas que possam provocar incêndios e lesões físicas. É por esses e outros motivos que o cobre está presente em dispositivos, como os disjuntores, fusíveis, hastes de aterramento, barramentos, interruptores e tomadas.

 

Características e aplicações

– O cobre é um metal muito utilizado para a construção de condutores elétricos, já que é muito dúctil e maleável.

– A eletricidade que flui por meio dos fios de cobre encontra muito menos resistência que encontraria em fios de alumínio ou aço, por exemplo. Além disso, além da prata, o cobre é melhor condutor elétrico que qualquer outro metal não precioso.

 

cobre-fotoAs peças da WEG também utilizam o cobre, como é o caso das bobinas. Foto: Acervo Museu WEG.

 

– O cobre caracteriza-se por apresentar uma grande capacidade de condução de corrente. Isto quer dizer que um cabo de cobre é menor que um de alumínio, considerando o mesmo índice de resistência. Um exemplo se dá ao comparar um condutor de alumínio e outro de cobre de uma mesma seção; este último tem uma capacidade 28% superior ao do primeiro. Igualmente, as perdas por Efeito Joule são 58% menor em relação ao alumínio.

– Os condutores de cobre garantem a eliminação de prováveis falhas causadas por maus contatos devido ao óxido que se forma no condutor, como o que poderia ocorrer ao alumínio. Além disso, dão maior facilidade no uso de soldas nos terminais e emendas.

– Durante uma instalação ou qualquer tipo de trabalho, os condutores sofrem inevitáveis dobramentos; quanto a isto os condutores de cobre são mais resistentes. É uma grande vantagem para eles já que podem dobrar e passar com mais facilidade pelos condutos sem medo de que se quebrem.

– Outra característica é que os cabos de cobre são menos volumosos, o que faz com que seu transporte e instalação sejam mais fáceis.

– Sua vida útil é muito mais longa que outros tipos de cabos. Por isto, a longo prazo, cabos de cobre são mais econômicos.

– Outra vantagem do cobre é sua alta resistência à corrosão, por isso também é aplicado em instalações subterrâneas e em linhas aéreas em regiões costeiras ou de alta poluição.

E aí? Gostou de saber mais sobre esse material tão importante para a história da WEG? Venha conhecer aplicações práticas! A entrada no Museu é gratuita. =)

 

O que é e como funciona a energia solar fotovoltaica?

A energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos.

Você já parou para pensar que o Sol é o principal responsável pela origem de diversas fontes de energia? Através dele se dá a evaporação, fase inicial do ciclo das águas, que permite a geração de energia através das hidrelétricas, o Sol também permite a circulação atmosférica por todo o mundo, originando os ventos, outra fonte energética.

Já a energia solar fotovoltaica é a tecnologia utilizada para produzir energia elétrica a partir da luz solar. Ela pode ser produzida até mesmo em dias nublados e chuvosos, porém quanto maior for a radiação solar, maior será  a quantidade de eletricidade produzida. A energia provinda do sol é inesgotável, uma excelente fonte de calor e luz e uma das grandes alternativas energéticas para o futuro.

Procurando por fontes de energia em locais remotos e isolados, praticamente sem rede elétrica, o desenvolvimento e investimento em energia solar começou em empresas do setor das telecomunicações. A tecnologia também foi logo utilizada para as missões no espaço

A energia fotovoltaica pode oferecer solução para diversas necessidades: desde ligar uma simples lâmpada de um poste de iluminação, até oferecer uma alternativa de produção de energia para uma casa ou mesmo uma grande usina solar, produzindo energia para milhares de famílias.

 

Como é produzida a energia solar

O processo de conversão da energia solar somente é possível graças ao efeito fotovoltaico, (composto por células normalmente feitas de silício ou outro material semicondutor). Assim, quando a luz solar incide sobre uma dessas células fotovoltaicas, os elétrons do material semicondutor são postos em movimento e geram eletricidade.

O efeito fotovoltaico, muito resumidamente, foi identificado por Edmond Becquerel em 1839, e significa o aparecimento de uma diferença de potencial nos extremos de uma estrutura de material semicondutor, que se deve à absorção da luz!

 

Entendendo a esquemática da energia solar fotovoltaica:

1) Os fótons da energia solar atingem as células fotovoltaicas, fazendo com que alguns dos elétrons que circundam os átomos se desprendam.

2) Estes elétrons livres vão migrar, através da corrente eléctrica, para a parte da célula de silício que está com ausência de elétrons.

3) Durante o dia todo, os elétrons irão fluir em uma direção constantemente, deixando átomos e preenchendo lacunas em átomos diferentes. Este fluxo de elétrons cria uma corrente elétrica, ou seja, a Energia Solar Fotovoltaica.

A potência gerada através dessa esquemática é enviada para o inversor — equipamento que converte a energia para os padrões da rede concessionária (corrente alternada). Depois disso, a energia é injetada na rede elétrica da residência, pronta para ser utilizada pelo consumidor.

 

 

sistema-de-microgeraçãoDiagrama esquemático do sistema fotovoltaico. Fonte: luzsolar.com.br

 

O mercado da energia fotovoltaica

Mais de 100 países já utilizam energia solar fotovoltaica. Os mercados que mais crescem são China, Japão e Estados Unidos, enquanto a Alemanha é o país que mais a produz, a energia provinda do sol é responsável por 6% da sua demanda de eletricidade. A energia solar fotovoltaica é agora, depois de hidráulica e eólica, a terceira mais importante fonte de energia renovável em termos de capacidade instalada a nível mundial.

Entre as vantagens na utilização da energia solar fotovoltaica estão: energia limpa; pode ser instalada em qualquer lugar; sistema silencioso; fonte inesgotável; sistema confiável; baixa manutenção; fácil instalação; é modular, pode ser ampliado conforme necessidade.

A energia fotovoltaica há muito tempo é vista como uma tecnologia de energia limpa e sustentável, que se baseia na fonte renovável de energia mais abundante e amplamente disponível no planeta – O SOL. Se você quer saber mais sobre fontes de energia renováveis, leia nosso artigo sobre a matriz energética no Brasil. 🙂

 

Marie Curie: quem foi a primeira mulher a ganhar um prêmio Nobel

Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

Em uma época onde apenas os homens podiam ir à universidade, Marie Curie descobriu um elemento químico e iniciou uma verdadeira revolução no meio científico. Sua maior contribuição para a ciência foi a descoberta da radioatividade e de novos elementos químicos. Com os feitos, foi a primeira mulher do mundo a ganhar um prêmio Nobel.

E não é “apenas” isso. Naquela época, como mulher, Marie Sklodowska Curie precisou enfrentar muitas dificuldades para alcançar seus sonhos, e apesar de todo o preconceito da sociedade foi pioneira por sua coragem, determinação e descobertas científicas, ela não foi só a primeira mulher a ganhar um Nobel em Ciências, como foi a primeira pessoa a receber o prêmio duas vezes.

Encorajada pelo pai a se interessar pela ciência, a polonesa terminou os estudos aos 15 anos e passou a trabalhar como professora. Como o governo russo proibia que mulheres frequentassem universidades dentro de seu império, para continuar os estudos, Marie mudou-se para Paris.  Em 1883, graduou-se bacharel em Física e Matemática pela Universidade de Sourbonne, tornando-se, mais tarde, a primeira mulher a lecionar nessa importante instituição de ensino europeia. Depois de formada, foi a primeira classificada para o mestrado em Física e, no ano seguinte, a segunda para o mestrado em Matemática.

Em 1894, Marie conheceu o professor Pierre Curie com o qual se casou no ano seguinte, e passou utilizar o sobrenome Curie. Na época Pierre trabalhava no Laboratório de Física e Química Industrial no qual trabalharam juntos mais tarde.

Em julho de 1898, o casal conseguiu isolar um elemento 300 vezes mais ativo que o urânio. Em homenagem à sua terra, Marie batizou-o de polônio. Mas os Curie não estavam satisfeitos, porque o resto do material, depois de extraído o polônio, era ainda mais potente. Continuaram a purificação e cristalização e encontraram um novo elemento, 900 vezes mais radioativo (termo criado por Marie) que o urânio. Estava descoberto o “rádio”.

Durante a Primeira Guerra Mundial, Marie encabeçou a implementação de um sistema de radiografia móvel — um veículo que tinha uma máquina de raios-X e equipamento fotográfico de câmara escura — ajudando no tratamento de milhões de soldados. Além disso, também contribuiu para a ciência ao aprisionar o gás que emanava do elemento rádio e enviar os tubos para o tratamento do câncer em hospitais do mundo inteiro.

“Eu faço parte dos pensam que a Ciência é belíssima. Um cientista em um laboratório não é apenas um técnico, ele é também uma criança diante de fenômenos naturais que o impressionam como um  conto de fada. Não podemos acreditar que todo progresso científico se reduz a mecanismos, máquinas, engrenagens, mesmo que essas máquinas tenham sua própria beleza”. Marie Curie

 

Prêmio Nobel

Seu primeiro Prêmio Nobel foi em 1903, dividido com seu marido Pierre Curie e o físico Henri Becquerel — pelas pesquisas sobre radiação.

Em 1904, Pierre foi nomeado professor da Sorbonne e Marie assumiu o cargo de assistente-chefe do laboratório dirigido por seu marido. Em 1905 Pierre Curie foi eleito para a Académie des Sciences. Dois anos depois Pierre Curie morreu tragicamente, vitimado por um atropelamento e Marie foi indicada para substituí-lo, tornando-se a primeira mulher a ocupar uma cadeira de professor na Sorbonne, e a primeira mulher a ocupar tal cargo na França.

Marie continua a estudar a radioatividade, principalmente suas aplicações terapêuticas e, em 1911, foi agraciada com o segundo Prêmio Nobel, desta vez de Química, por suas investigações sobre as propriedades do rádio e as características dos seus compostos. Tornou-se a primeira personalidade a receber duas vezes o Prêmio Nobel.

 

Morte

Em 4 de julho de 1934, Marie Curie faleceu perto de Sallanches, na França. Seus órgãos vitais estavam comprometidos devido à constante exposição à radioatividade sem nenhuma proteção.

Inspirada pela mãe, a filha de Marie, Irène Joliot-Curie, trabalhou com o marido Frédéric Joliot nos campos da estrutura do átomo e física nuclear, demonstrando a estrutura do nêutron e descobrindo a radioatividade artificial, feito este que rendeu mais um Prêmio Nobel para a família Curie.

A história de Marie rendeu muitos materiais audiovisuais. Para conhecer um pouco mais dessa fantástica história, o Museu WEG separou dois vídeos: o documentário “Marie Curie: A Mãe da Radiação” e o filme “Marie Curie na Guerra”, de 2014. Ambos disponíveis no Youtube. Assista:

https://www.youtube.com/watch?v=dhQsU0QDYew

***

Além de um ícone da ciência, Marie Curie também foi uma heroína de guerra e uma grande inspiração para que mais mulheres continuem seus estudos nos campos científicos. Que seu legado continue inspirando novos e novas cientistas no mundo todo! 🙂

Brasileiros analisam história da arte usando física

Haroldo, físico da Universidade de Maringá, no Paraná, foi criticado por vários pintores que achavam que não era possível quantificar a arte.

Segundo historiadores, a arte é dividida por suas características e estilos como, por exemplo, moderna e contemporânea. Pensando nisso, os físicos brasileiros Haroldo Ribeiro e Higor Sigaki buscaram verificar essa afirmação histórica, mas desta vez de uma maneira matemática.

No início, ao utilizar fórmulas matemáticas para analisar pinturas, Haroldo, físico da Universidade de Maringá, no Paraná,  foi criticado por vários pintores que achavam que não era possível quantificar a arte. Mas ele não desistiu e em parceria com Higor, desenvolveu um programa de computador que desconstrói obras de arte e as transforma em conjuntos de números para encontrar um padrão nas pinturas e na evolução da arte.

Nesta pesquisa, os físicos calcularam a probabilidade de os pintores seguirem um determinado padrão em cada momento da história.

Analisando a quantidade de pixels nas pinturas e as transformando em matrizes, as obras são caracterizadas a partir de dois critérios: entropia e complexidade. A entropia é a desordem, ou seja, os pixels dispostos de maneira aleatória em uma imagem. Já o conceito de complexidade, dando jus ao nome, é um pouco mais difícil de entender.

Segundo Ribeiro, em entrevista à GALILEU, a pesquisa aborda como complexo algo que não é totalmente aleatório mas que também não segue um padrão regular. “Uma pintura muito aleatória não é complexa. No entanto, uma pintura completamente ordenada também não é. O complexo está entre o aleatório e o regular. Tem que estar no meio, mas distante dos dois”, explicou.

Como já diziam os historiadores, a dupla foi capaz de encontrar uma mudança nos padrões das obras. Na arte moderna, por exemplo, as pinturas costumam ter uma grande entropia, mas pouca complexidade, mostrando que a arte é mais aleatória e desordenada. No caso da arte pós-moderna, as pinturas têm alta complexidade e baixa entropia. As artes da renascença ficam entre os dois conceitos.

No trabalho, as duas pinturas abaixo são tomadas como exemplos. A primeira, “Who’s Afraid of Red, Yellow and Blue”, de Barnett Newman, é classificada como tendo baixa entropia e baixa complexidade, já que segue padrão regular. Já a segunda pintura, “The Garden of Earthly Delights”, feita por Hieronymus Bosch, é considerada mais complexa, mas com um grau de entropia mediano.

arte1

Exemplos de pinturas analisadas pela complexidade e entropia (Foto: reprodução)

O objetivo da análise é realizar uma classificação cada vez mais efetiva das obras de arte, que é algo muito demorado para ser feito, mesmo por um especialista de obras de arte. Mais uma vez fomos surpreendidos pelas equações e tudo o que elas podem fazer por nós e nossa história!

Fonte: Revista Galileu.

 

Quais as matrizes energéticas mais utilizadas no Brasil?

Uma matriz energética é o conjunto de todos os tipos de energia que um país, estado, ou até mesmo o…

Uma matriz energética é o conjunto de todos os tipos de energia que um país, estado, ou até mesmo o mundo, produz e consome. Algumas pessoas podem confundir a matriz energética com a matriz elétrica, mas não é difícil diferenciar: enquanto a energética representa o conjunto de fontes de energia disponíveis para movimentar carros, acender o fogo do fogão e gerar eletricidade, a matriz elétrica é formada apenas pelo conjunto de fontes disponíveis para gerar energia elétrica. Ou seja: a matriz elétrica é parte da matriz energética.

Matriz energética no Brasil

Ao contrário da tendência mundial de uso de fontes não renováveis de energia (aquelas que se esgotam com o tempo), a matriz energética no Brasil é uma das mais renováveis do mundo industrializado, ou seja, nosso país possui boa parte — cerca de 43% — de fontes energéticas que se renovam na natureza em um curto espaço de tempo, como a hidráulica, eólica, biomassa e solar.
Essa característica de nossa matriz é muito importante. As fontes não renováveis de energia são as maiores responsáveis pela emissão de gases de efeito estufa e, como consumimos mais energia de fontes renováveis que em outros países, emitimos menos gases de efeito estufa por habitante que a maioria dos outros países. Você pode entender melhor este assunto em Energia e Aquecimento Global.
Mas ainda podemos melhorar muito: o grande desafio é diminuir nos próximos anos o uso de fontes poluidoras como, por exemplo, petróleo (do qual somos dependentes) e carvão mineral.

 

A Matriz energética do Brasil (dados de 2017)

36,2% – Petróleo e derivados
Principal fonte de energia para motores de veículos. Além de não ser renovável é altamente poluente.

17,4% – Biomassa (bagaço de cana, lenha, lixívia)
Biocombustíveis como, por exemplo, o etanol.

12,9% – Gás Natural
Uso principalmente em automóveis e residências.

11,9% – Hidráulica e eletricidade
Maior fonte de produção de energia elétrica no Brasil. Dado inclui a energia hidráulica produzida e importada pelo Brasil.

9,5% – Lenha e carvão vegetal
Usada, principalmente, por pequenas empresas e residências.

5,6% – Carvão Mineral e derivados
Usada principalmente em termelétricas. Dado inclui gás de coqueria.

5,8% – Eólica
Energia limpa e renovável gerada pelo vento. O Brasil tem grande potencial e sua produção está aumentando a cada ano.

2,2% – Gás industrial
Gás utilizado por indústrias, comércio, condomínios etc.

1,4% – Nuclear
Energia limpa produzida nas usinas de Angra 1 e Angra 2 no estado do Rio de Janeiro. Uso de urânio (U308) e derivados.

0,1% – Outras
Entre outras fontes podemos destacar a solar.

Fonte : Ministérios da Minas e Energia do Brasil (Resenha Energética 2018).

 

Curiosidades

– Na década de 1940, cerca de 80% da energia gerada no Brasil era proveniente da queima de lenha.

– Na matriz energética mundial, apenas 13,8% (dados de 2017) é composta por fontes renováveis.

– O uso das usinas hidrelétricas para obtenção de energia representa 75% da geração elétrica no Brasil, que conta com 140 usinas operando na geração de energia.

– O etanol, derivado da cana-de-açúcar, alcançou, no ano de 2015, a marca de 37 bilhões de litros produzidos. O uso desse biocombustível como alternativa ao uso da gasolina (produzida por meio da queima de combustíveis fósseis) evitou que o país emitisse, nos últimos 30 anos, cerca de 800 milhões de toneladas de gás carbônico à atmosfera.

– No que tange à produção de energia eólica em comparação aos países da América Latina e ao Caribe, o Brasil é o que possui maior capacidade de produção de energia por meio dos ventos (dados do Atlas Eólico Nacional).

Porém nossa matriz energética também possui algumas desvantagens como, por exemplo, depender de combustíveis fósseis para geração de energia, e a energia hidráulica, responsável pela maior produção no país, causar grandes impactos socioambientais. Temos um grande caminho pela frente!
Gostou do assunto? Que tal visitar o Museu WEG e conhecer mais sobre nossa matriz energética? Vem pra cá, a entrada é gratuita. 😉

17ª Semana Nacional dos Museus

De 13 a 19 de maio acontece a 17ª Semana Nacional de Museus.

De 13 a 19 de maio acontece a 17ª Semana Nacional de Museus – SNM, temporada cultural promovida pelo Ibram em comemoração ao Dia Internacional de Museus (18 de maio). Nesta edição, 1.114 instituições de cultura de todo o país oferecem ao público 3.222 atividades especiais, como visitas mediadas, palestras, oficinas, exibição de filmes e muito mais. Em 2019, assim como nos anos anteriores, nós também estamos participando desta SNM.

A eficácia das atividades desempenhadas pelo setor museal na realização dessa ação, comprova que a movimentação nacional de programações culturais é um verdadeiro instrumento de ampliação do acesso à cultura e de visibilidade dos museus. Ademais, ela é responsável por um significativo aumento de público: durante a semana em que ocorre, a média de visitantes dos museus participantes sobe 79%.

O tema que norteia esta edição da Semana Nacional de Museus é “Museus como Núcleos Culturais: O Futuro das Tradições”, que propõe discutir o papel dos museus como centros emanadores e, igualmente, receptores de práticas, costumes e pensamentos de nossa cultura.

O tema escolhido vem ao encontro com a missão do Museu WEG de Ciência e Tecnologia que é a preservação da história. Assim como o museu preserva a história da WEG, as pessoas costumam preservar a história das famílias, principalmente através de fotografias. A tradição de colocar fotos em porta-retratos vem de longa data, porém, com a facilidade de fotografar o costume de revelar uma foto e principalmente, colocá-las em exposição vem diminuindo. A intenção da oficina, que será realizada com alunos do 5º ano, é resgatar este costume e ao mesmo tempo, fazer que a fotografia exposta fique em bom estado de conservação por muito tempo.

A ação no museu acontecerá em 17 de maio, os alunos farão uma breve visita na exposição, focando principalmente na conservação do acervo e na história da WEG. Após, será realizada a atividade prática com orientações no campo de conservação de acervos e, serão montados, junto com as crianças porta-retratos nas melhores condições possíveis para que, a fotografia colocada nela, seja bem conservada. Após esta montagem, as crianças receberão a foto que elas fizeram na chegada para colocarem no porta-retrato. Desta forma, além de conservar a foto irão preservar este momento que vivenciaram no museu.

Acompanhe nossas redes sociais para ficar por dentro de nossas programações e ver o resultado desta ação!

www.facebook.com/museuweg
www.instagram.com/museuweg

O impacto causado pela invenção do telégrafo

Você sabe como o telégrafo mudou o mundo? Confira neste post!

O telégrafo conectou o mundo de uma forma sem precedentes. Seu impacto comercial, social e cultural foi, para a época, tão significativo como a internet é para os dias atuais.

Antes do telégrafo era preciso de um meio de transporte para levar uma mensagem de um ponto ao outro. Com sua invenção as mensagens começaram a ser transmitidas a velocidade da luz. O aparelho foi durante muito tempo o principal meio de comunicação, estudado e adaptado por várias pessoas, todas em busca da melhor forma de enviar palavras.

Uma das pessoas mais importantes na história do telégrafo é Samuel Morse. Ele criou o alfabeto conhecido como Código Morse, onde pontos eram representados por pulsos mais curtos e os traços por pulsos mais longos. Com o protótipo desenvolvido e em funcionamento, Morse pediu ao congresso dos Estados Unidos um financiamento para fazer uma linha de cerca de 60 quilômetros, ligando Baltimore a Washington. O orçamento saiu e a  linha foi concluída em 1844, após anos de espera. A primeira mensagem transmitida por ele foi “What hath god wrought”, algo como “O que Deus permitiu”. Antes de revolucionar a comunicação global,  a ideia foi chamada de “superficial, repentina, insensível, rápida demais para a realidade” pelo New York Times.

Tempo depois todos os continentes estavam ligados por meio de cabos submarinos para que a comunicação pudesse “viajar”. O telégrafo foi utilizado amplamente por indústrias, governos e até mesmo pelas forças armadas de diversos países em momentos de guerra, onde todos necessitavam de comunicação.

Com a invenção foi possível conversar com alguém do outro lado do mundo de forma instantânea, aproximando o mundo de uma forma nunca vista antes — imagine que antes a mesma comunicação dependia de navios!

Os telégrafos se alastraram pelo mundo inteiro durante o século XIX, tendo chegado ao Brasil somente em 1852. Mais tarde o aparato que revolucionou a forma como nos comunicamos foi substituído pelo telefone e outros meios de comunicação.

A evolução tecnológica dos meios de comunicação é realmente incrível! Graças a invenções como o telégrafo e o Código Morse, hoje podemos nos comunicar por aparelhos muito pequenos e frágeis, em velocidades que antes eram vistas como impossíveis para a realidade.

Aceleradores de partículas são laboratórios gigantes. Por fora, parecem grandes túneis, que podem ser retos ou em forma de anel e ter vários quilômetros de extensão. Dentro deles, as partículas que compõem os átomos – como prótons e elétrons – são aceleradas a velocidades próximas à da luz para que elas possam bombardear núcleos atômicos estáveis. Se você quer saber um pouco mais, leia o artigo que escrevemos sobre os aceleradores de partículas e o que eles fazem. Mas depois volta pra cá, ok?

No ano de 2008, o mundo inteiro voltou a sua atenção para o maior acelerador de partículas do mundo, o LHC. O gigante de 27 km de circunferência e 8,6 km de diâmetro tenta usar a tecnologia para recriar um ambiente semelhante ao do início do Universo. Com ele, a ciência já detectou o bóson de Higs – a partícula sub-atômica que confere massa a quarks e elétrons (sem ele, não seriam formados os átomos, e o Universo seria só um monte de partículas flutuando por aí).

É bem difícil imaginar a dimensão e a importância disso tudo. A boa notícia é que o canal britânico de televisão BCC produziu um vídeo em 360 graus dentro do acelerador e você pode dar uma voltinha em um dos lugares mais importantes para a ciência moderna!

O vídeo de cerca de três minutos explica algumas características do acelerador, em inglês, mas mesmo para quem não entende a língua, o passeio pelas instalações é bem simples: basta clicar no vídeo e utilizar o mouse para arrastar e virar para o lado que desejar. Você também pode usar as setas para girar a câmera. Aproveite o passeio!

Se assim como nós, você também fica fascinado com essas estruturas, vai adorar conhecer histórias e saber como é trabalhar dentro de um acelerador. Isto, porque já entrevistamos brasileiros que trabalham em aceleradores de partículas pelo mundo, vem ler:

 

 – Conheça o jaraguaense que trabalha com aceleradores de partículas na Suécia.

O brasileiro que está há 17 anos trabalhando com aceleradores na Suíça.

Você passaria na prova para trabalhar com Thomas Edison?

Responda algumas perguntas e descubra :p

Você deve conhecer Thomas Edison como um grande empresário e também por suas invenções, como a lâmpada e o fonógrafo. Ele  é um dos precursores da revolução tecnológica do século XX, patenteou e financiou o desenvolvimento de muitos dispositivos de grande interesse industrial e teve também um papel determinante na indústria do cinema.

Thomas Edison And His Big Bulb

Thomas Edison, 1929 – Underwood Archives/Getty Images

Outra criação bem interessante de Thomas Edison, foi um teste de 164 perguntas quase impossível de ser respondido. Segundo o portal Smithsonian, o questionário foi elaborado para encontrar os colaboradores adequados para trabalhar na fábrica de Edison, no início da década de 1920. Registros históricos mostram que o inventor não se importava muito com o diploma universitário.

 

Acontece que um candidato, o estudante Charles Hansen, que foi reprovado, compartilhou todas as perguntas de que ele lembrava com o jornal The New York Times em 1921, chamando o exame de “bobo”. Dos 718 candidatos que fizeram, somente 57 obtiveram aprovação de 70%, e apenas 32 obtiveram 90% ou mais.

 

As questões se tornaram públicas, e repórteres começaram a pesquisar para ver o quão bem as pessoas poderiam se sair no teste. Se você quiser se desafiar,  listamos algumas das perguntas abaixo. No final do artigo você pode conferir as respostas que apareceram no The New York Times, porém, é importante lembrar que as respostas são consideradas corretas em 1921 e algumas conclusões podem ter mudado desde então.

Perguntas:

 

  1. 1. Que cidade dos Estados Unidos é conhecida por fazer máquinas de lavar roupa?
  2. 2. Em qual país, além da Austrália, são encontrados cangurus?
  3. 3. De que região os EUA obtêm ameixas?
  4. 4. Cite um grande corpo de água do interior que não tenha saída.
  5. 5. Qual é o maior estado dos EUA? E o segundo?
  6. 6. Qual é o nome de um famoso fabricante de violinos?
  7. 7. Quais ingredientes estão na melhor tinta branca?
  8. 8. O que causa as marés?
  9. 9. O que provoca a mudança das estações?
  10. 10. Quem descobriu o Pólo Sul?
  11. 11. Quão rápido a luz viaja em pés por segundo?
  12. 12. De que tipo de madeira são feitas as alças de machado?
  13. 13. Que cereal é usado em todo o mundo?
  14. 14. Cite três venenos poderosos.
  15. 15. Por que um termômetro Fahrenheit é chamado Fahrenheit?

 

Respostas:

  1. 1. Chicago
  2. 2. Nova Guiné
  3. 3. As ameixas são cultivadas no vale de Santa Clara e em outros lugares
  4. 4. O Grande Lago Salgado, em Utah, por exemplo
  5. 5. Texas, depois Califórnia (nota: hoje é o Alasca, depois o Texas)
  6. 6. Stradivarius
  7. 7. Óleo de linhaça, com uma pequena percentagem de terebintina e líquido “seco” (dryer), juntamente com uma mistura de chumbo branco e óxido de zinco
  8. 8. A atração gravitacional da Lua exerce força poderosa sobre os oceanos por causa de sua fluidez, que é combinada com a fraca força sobre a Terra por causa de sua rigidez comparativa
  9. 9. A inclinação da Terra para o plano da eclíptica. A rotação da Terra ao redor do Sol faz com que os raios solares sejam recebidos em inclinações diferentes, com consequentes variações de temperatura.
  10. 10. Roald Amundsen e, em seguida, Robert Falcon Scott
  11. 11. Aproximadamente 186.700 milhas por segundo no vácuo e um pouco menos pela atmosfera
  12. 12. Fraxinus é geralmente usada no Leste e Nogueira no Oeste
  13. 13. Nenhum cereal é usado em todas as partes do mundo. O trigo é usado mais frequentemente, com arroz e milho em seguida
  14. 14. Cianeto de potássio, estricnina e arsênico são respostas aceitáveis.

Tem o nome de Gabriel Daniel Fahrenheit, o físico alemão que a inventou

 

Difícil demais, né? Realmente quase impossível saber todas as respostas! Confira no portal Gizmodo a lista com todas as perguntas (em inglês).

 

Curtiu? Leia também o artigo que escrevemos sobre a batalha entre Thomas Edison e Nikola Tesla. =)