Você passaria na prova para trabalhar com Thomas Edison?

Responda algumas perguntas e descubra :p

Você deve conhecer Thomas Edison como um grande empresário e também por suas invenções, como a lâmpada e o fonógrafo. Ele  é um dos precursores da revolução tecnológica do século XX, patenteou e financiou o desenvolvimento de muitos dispositivos de grande interesse industrial e teve também um papel determinante na indústria do cinema.

Thomas Edison And His Big Bulb

Thomas Edison, 1929 – Underwood Archives/Getty Images

Outra criação bem interessante de Thomas Edison, foi um teste de 164 perguntas quase impossível de ser respondido. Segundo o portal Smithsonian, o questionário foi elaborado para encontrar os colaboradores adequados para trabalhar na fábrica de Edison, no início da década de 1920. Registros históricos mostram que o inventor não se importava muito com o diploma universitário.

 

Acontece que um candidato, o estudante Charles Hansen, que foi reprovado, compartilhou todas as perguntas de que ele lembrava com o jornal The New York Times em 1921, chamando o exame de “bobo”. Dos 718 candidatos que fizeram, somente 57 obtiveram aprovação de 70%, e apenas 32 obtiveram 90% ou mais.

 

As questões se tornaram públicas, e repórteres começaram a pesquisar para ver o quão bem as pessoas poderiam se sair no teste. Se você quiser se desafiar,  listamos algumas das perguntas abaixo. No final do artigo você pode conferir as respostas que apareceram no The New York Times, porém, é importante lembrar que as respostas são consideradas corretas em 1921 e algumas conclusões podem ter mudado desde então.

Perguntas:

 

  1. 1. Que cidade dos Estados Unidos é conhecida por fazer máquinas de lavar roupa?
  2. 2. Em qual país, além da Austrália, são encontrados cangurus?
  3. 3. De que região os EUA obtêm ameixas?
  4. 4. Cite um grande corpo de água do interior que não tenha saída.
  5. 5. Qual é o maior estado dos EUA? E o segundo?
  6. 6. Qual é o nome de um famoso fabricante de violinos?
  7. 7. Quais ingredientes estão na melhor tinta branca?
  8. 8. O que causa as marés?
  9. 9. O que provoca a mudança das estações?
  10. 10. Quem descobriu o Pólo Sul?
  11. 11. Quão rápido a luz viaja em pés por segundo?
  12. 12. De que tipo de madeira são feitas as alças de machado?
  13. 13. Que cereal é usado em todo o mundo?
  14. 14. Cite três venenos poderosos.
  15. 15. Por que um termômetro Fahrenheit é chamado Fahrenheit?

 

Respostas:

  1. 1. Chicago
  2. 2. Nova Guiné
  3. 3. As ameixas são cultivadas no vale de Santa Clara e em outros lugares
  4. 4. O Grande Lago Salgado, em Utah, por exemplo
  5. 5. Texas, depois Califórnia (nota: hoje é o Alasca, depois o Texas)
  6. 6. Stradivarius
  7. 7. Óleo de linhaça, com uma pequena percentagem de terebintina e líquido “seco” (dryer), juntamente com uma mistura de chumbo branco e óxido de zinco
  8. 8. A atração gravitacional da Lua exerce força poderosa sobre os oceanos por causa de sua fluidez, que é combinada com a fraca força sobre a Terra por causa de sua rigidez comparativa
  9. 9. A inclinação da Terra para o plano da eclíptica. A rotação da Terra ao redor do Sol faz com que os raios solares sejam recebidos em inclinações diferentes, com consequentes variações de temperatura.
  10. 10. Roald Amundsen e, em seguida, Robert Falcon Scott
  11. 11. Aproximadamente 186.700 milhas por segundo no vácuo e um pouco menos pela atmosfera
  12. 12. Fraxinus é geralmente usada no Leste e Nogueira no Oeste
  13. 13. Nenhum cereal é usado em todas as partes do mundo. O trigo é usado mais frequentemente, com arroz e milho em seguida
  14. 14. Cianeto de potássio, estricnina e arsênico são respostas aceitáveis.

Tem o nome de Gabriel Daniel Fahrenheit, o físico alemão que a inventou

 

Difícil demais, né? Realmente quase impossível saber todas as respostas! Confira no portal Gizmodo a lista com todas as perguntas (em inglês).

 

Curtiu? Leia também o artigo que escrevemos sobre a batalha entre Thomas Edison e Nikola Tesla. =)

 

 

Dez equações que mudaram o mundo

Confira quais são as dez equações que mudaram o mundo.

Enquanto alguns fogem delas nas aulas de exatas, outros são fascinados! Desde a antiguidade as equações e teoremas matemáticos vêm causando um grande impacto para a criação do mundo atual, seja por sua importância na ciência, tecnologia e até na filosofia. O fato é que elas podem ser revolucionárias. Veja a seguir dez equações que mudaram o mundo:

 1. Teorema de Pitágoras

Século 6 a.C.

Pitágoras (570 a.C.-495 a.C.)

Um dos teoremas mais conhecidos. Se você não lembra, vamos facilitar:

 

 “Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.”

ou ainda

“A hipotenusa ao quadrado é igual a soma dos catetos ao quadrado.”

 Lembrou? Praticamente tudo na engenharia civil passa pelo teorema de Pitágoras, que ajuda a fazer cálculos para triângulos e quaisquer outros polígonos. Grandes edifícios da Antiguidade foram construídos seguindo a equação, mesmo antes de Pitágoras escrevê-la – o mérito do matemático grego foi dar a ela uma formulação simples.

 

2. Números amigáveis

Século 9

Thābit ibn Qurra (826-901)

Qurra, nascido no Iraque, foi um dos expoentes da era de ouro do Islã. Entre seus feitos, ajudou a estabelecer conceitos importantes da álgebra, incluindo a noção de números amigáveis – são pares de números em que um deles é a soma dos divisores do outro. Sua equação foi usada, por exemplo, para cálculos de eclipses solares.

 

3. Logaritmos

1620

John Napier (1550-1617)

logaritimos

Antes do desenvolvimento do computador, o cálculo com os logaritmos era a maneira de se multiplicar grandes números.  Graças a Napier, matemático britânico, hoje é possível consultar tabelas para acelerar em muito os cálculos de matemáticos, astrônomos, engenheiros e físicos. Os logaritmos também estão na base da linguagem de programação dos computadores.

 

4. Função derivada do cálculo

1668

Isaac Newton (1643-1727)

Importantíssima, essa equação fundamenta todas as teorias que explicam como os seres vivos e os objetos se movem. Mede a taxa em que uma quantidade qualquer muda de acordo com o tempo. Está presente na ciência da computação, engenharia, economia e medicina.

A segunda lei de Newton, de 1686,  mostra que a força resultante que atua sobre um corpo é resultado da multiplicação da massa do corpo por sua aceleração. Ela ajuda a calcular a força necessária para mover determinada quantidade de massa – seja ela um carro ou um foguete.

 

 5. Lei da Gravitação Universal

1687

Isaac Newton (1643-1727)

Você lembra da história da maçã que caiu na cabeça de Isaac Newton enquanto ele admirava a lua no céu? Isso aconteceu em 1687. Também do gênio inglês, a Lei da Gravidade ou da Gravitação Universal nos fez entender não só por que as coisas caem no chão mas também como, por exemplo, um satélite artificial pode ser mantido no espaço.

 

6. Equação de onda

1746

Jean le Rond d’Alembert (1717-1783)

Uma série de descobertas e teorias sobre o comportamento das ondas culminou nesta equação do matemático francês, que descreve como o formato da corda se altera ao longo do tempo. A fórmula teve implicações importantes na teoria musical, mas é usada até para estudar terremotos.

 

7. Segunda lei da termodinâmica

1850

Ludwig Boltzmann (1844-1906)

Essa lei é um princípio de evolução porque determina em qual direção as possíveis transformações energéticas do mundo podem ser realizadas. Em uma época de grandes descobertas, o austríaco Boltzmann conseguiu explicar como os átomos interagem de forma a alterar o comportamento de grandes objetos. Sem a lei, seria quase impossível realizar a Revolução Industrial – que permitiu desenvolver motores a combustão e aparelhos refrigeradores.

8. Equação Maxwell-Faraday

1873

Michael Faraday (1791-1867) e James Clerk Maxwell (1831-1879)

Primeiro veio o inglês Faraday, que descobriu que eletricidade e magnetismo são forças relacionadas. Depois, o escocês Maxwell usou o trabalho de Faraday para desenvolver as bases do eletromagnetismo. As baterias de automóveis, as turbinas eólicas e as usinas hidrelétricas precisam dessa teoria, que é composta de quatro equações:

  • – Equação de Maxwell-Gauss
  • – Equação de Maxwell-Thomson
  • – Equação de Maxwell-Faraday
  • – Equação de Maxwell-Ampère

 

As quatro equações de Maxwell unificaram a eletricidade, o magnetismo e a óptica. Em linguagem matemática, representam os fenômenos básicos do eletromagnetismo.

Expressa a relação indissociável entre carga e campo: carga elétrica necessariamente gera campo elétrico, faz parte da sua natureza.

Indica a não existência de monopolos magnéticos na natureza. Há pesquisas em busca do monopolo magnético, mas até hoje nunca foi observado.

Traduz a geração de campo elétrico por um campo magnético variável no tempo. Este fenômeno é verificado pelo surgimento de uma corrente elétrica em um circuito, quando este é transpassado por um ímã.

Expressa a geração de campo magnético por uma corrente elétrica ou um campo elétrico que varia no tempo, fenômeno verificado pela mudança de orientação de agulhas magnéticas quando próximas de uma corrente elétrica.

 

Você encontra as equações de Maxwell expostas no Museu WEG.

Você encontra as equações de Maxwell expostas no Museu WEG.

 9. Equivalência entre massa e energia

1905

Albert Einstein (1879-1955)

relatividadeA Teoria da Relatividade de Einstein continua a revolucionar nossa vida até hoje, mostrando que a matéria pode ser convertida em energia e vice-versa. É que Einstein provou que massa é uma quantidade absurdamente condensada de energia. Isso mudou a ciência para sempre, ajudou no entendimento de buracos negros e outros fenômenos da astronomia e propiciou o surgimento da energia nuclear, inclusive da bomba atômica.

 

10. Teoria da informação

1949

Claude Shannon (1916-2001) e Warren Weaver (1894-1978)

 

As equações desta dupla americana têm muitas aplicações práticas , elas estabelecem os padrões de armazenamento e transmissão de informações. A fórmula é essencial na compressão de dados em formatos populares, do mp3 ao jpeg, e também no funcionamento das redes sociais.

 

Agora que você chegou até aqui, concorda que essas equações realmente revolucionaram nossa vida? Existem diversas outras equações importantíssimas, qual será a próxima? =)

Ohm

Georg Simon Ohm, resistência elétrica e a Lei de Ohm

Georg Simon Ohm foi um físico e matemático que contribuiu muito com a física, principalmente para a eletrodinâmica, onde estabeleceu…

Georg Simon Ohm foi um físico e matemático que contribuiu muito com a física, principalmente para a eletrodinâmica, onde estabeleceu uma lei batizada com seu nome. Ohm nasceu em 16 de março de 1787, em Erlangen, na Bavária (Alemanha) e iniciou sua carreira como professor de matemática no Colégio dos Jesuítas, na cidade de Colônia, em 1825.

Estudante da Universidade de Erlangen, obteve seu doutorado em 1811 com a apresentação de sua dissertação sobre luz e cores. Sua intenção era se tornar professor universitário, então optou por fazer experiências com a eletricidade. Para isso, construiu seu próprio equipamento, incluindo os fios.

Foi experimentando diferentes espessuras e comprimentos de fios que acabou descobrindo relações matemáticas extremamente simples envolvendo essas dimensões e as grandezas elétricas. Inicialmente, verificou que a intensidade da corrente era diretamente proporcional à área da seção do fio e inversamente proporcional a seu comprimento. Com isso, Ohm pôde definir um novo conceito: o de resistência elétrica.

ohm-face

Em 1827, publicou o resultado daquele que se tornou o seu mais importante trabalho — O circuito galvânico examinado matematicamente. Esse trabalho definiu o que conhecemos hoje como a Lei de Ohm: “A intensidade da corrente elétrica que percorre um condutor é diretamente proporcional à diferença de potencial e inversamente proporcional à resistência elétrica do circuito.”

Como ocorre com tantos pesquisadores, seu trabalho começou a ser reconhecido no exterior. Somente em 1841 a importância de seu trabalho sobre a resistência de condutores foi reconhecida, e Ohm recebeu a medalha da Real Sociedade Britânica. Em 1849, Ohm tornou-se professor da Universidade de Munique, cargo que almejava e ocupou por apenas cinco anos, os últimos de sua vida.

Tabela

Tabela periódica mostra quais elementos vão desaparecer no futuro

Você já deve conhecer a Tabela periódica, um modelo que agrupa os elementos químicos conhecidos e suas propriedades. Na tabela,…

Você já deve conhecer a Tabela periódica, um modelo que agrupa os elementos químicos conhecidos e suas propriedades. Na tabela, os elementos são organizados em ordem crescente, correspondente ao números de prótons. Hélio, oxigênio, magnésio e alumínio são alguns deles. Mas, você já parou para pensar que estes elementos podem não ser infinitos e estar prestes a desaparecer em um futuro próximo?

A Sociedade Química Europeia, um grupo que representa mais de 160 mil estudiosos da União Europeia, fez uma tabela periódica bem diferente da convencional, o projeto tem como objetivo mostrar a abundância, escassez e finitude de elementos encontrados na Terra.

tabela_periodica

Tabela Periódica mostra escassez de elementos – Sociedade Química Europeia

Nesta nova tabela, a grande novidade está no modo como os elementos são expostos: em vez de seguir a ordem clássica, onde cada um dos elementos tem um quadrado simétrico, essa tabela os categoriza a partir de sua abundância ou escassez. Enquanto na tabela periódica tradicional são apresentados 118 elementos, inclusive os sintetizados, o novo projeto classifica apenas os elementos naturalmente encontrados na Terra — 90, ao todo.

Cole-Hamilton, presidente da Sociedade Química Europeia, conta que o objetivo é mostrar como os elementos em nosso planeta são finitos e podem, dentro de alguns anos, desaparecer.

Mas vamos com calma! Para nosso alívio, segundo a tabela, o oxigênio — que garante nossa respiração — não corre risco de extinção. Já elementos usados na produção de computadores e celulares, por exemplo, podem estar acabando. Um deles é o índio, que é usado em telas touch screens para celulares e computadores.

Uma das recomendações, segundo Hamilton, é diminuir a compra desenfreada de tecnologia, algo que parece quase impossível nos dias atuais. “Se continuarmos usando o elemento índio da forma como estamos nossas reservas vão se esgotar em 20 anos”, contou o presidente ao programa de rádio Marketplace.

Mas não são apenas os elementos usados para tecnologia que correm risco de extinção: o hélio, utilizado em ressonâncias magnéticas, também não anda tão bem quanto se imaginava. Hamilton conta que, apesar do elemento ser um dos mais abundantes na Terra, é consumido em um ritmo tão desenfreado que deve durar apenas mais 10 anos.

Sempre é hora de repensar e reinventar a maneira como utilizamos nossos recursos, sejam eles naturais ou não. Ainda bem que existe a Ciência para nos alertar e criar novas formas de conviver com o mundo!

Fonte: Revista Galileu.

Filmes

Filmes incríveis sobre a vida de grandes cientistas

Filmes são uma ferramenta poderosa que possuímos para conhecer as trajetórias de grandes cientistas e apreciar suas conquistas. Além de…

Filmes são uma ferramenta poderosa que possuímos para conhecer as trajetórias de grandes cientistas e apreciar suas conquistas. Além de terem contribuído com descobertas que mudaram significativamente o rumo e os conceitos que desenvolvemos como sociedade, muitos desses cientistas tiveram histórias belíssimas de superação, coragem e brilhantismo. Selecionamos alguns longas que você precisa conhecer. Confira!

A Teoria de Tudo (2015)

ateoria-detudo

Cena do filme “A Teoria de Tudo”. (Créditos da imagem: Reprodução).

O filme é baseado na vida do físico britânico Stephen Hawking, é um retrato relativamente preciso da carreira e da vida pessoal de um dos cientistas mais famosos do mundo. Hawking revolucionou nosso entendimento sobre os buracos negros, ao mesmo tempo em que travava uma batalha particular vitalícia contra a esclerose lateral amiotrófica (ELA). O filme é fiel a realidade e mescla as dificuldades e sonhos de uma mente que sempre buscou compreender a vida por meio do impacto da ciência.

Alexandria (2009)

alexandria

(Cena do filme “Alexandria”. (Créditos da imagem: Reprodução)

O longa mistura ficção e história para retratar a jornada de Hipátia de Alexandria, a grega polímata à frente de seu tempo: matemática, filósofa e astrônoma, foi a primeira matemática que se tem notícias. Alexandria ousou lecionar na Academia Neoplatônica, em uma época que mulheres não podiam ter acesso ao conhecimento.

Giordano Bruno (1973)

GiordanoBruno

Cena do filme “Giordano Bruno”. (Créditos da imagem: Reprodução).

Giordano Bruno foi um dos precursores da ciência moderna e grande pensador do século 16. Sua história é um dos melhores exemplos do que pode acontecer a um cientista que ousa enxergar à frente de seu tempo e desafiar as instituições estabelecidas, sendo fatalmente injustiçado. Depois de percorrer toda a Europa pregando o heliocentrismo e a infinitude do Universo, Bruno foi condenado à fogueira em 1600 pela Inquisição católica. O filme conta de maneira impressionante a vida deste grande astrônomo e filósofo.

O Jogo da Imitação (2014)

ojogo-imitação

Cena do filme “O Jogo da Imitação”. (Créditos da imagem: Reprodução)

O filme retrata a história do matemático Alan Turing, considerado o pai da computação. Turing trabalhou para o serviço de inteligência britânico durante o período da Segunda Guerra, onde liderou uma equipe nas instalações secretas de Bletchley Park, responsável por decifrar mensagens nazistas criptografadas pela máquina Enigma — que produzia códigos considerados “indecifráveis”. Ele conseguiu. Sua contribuição foi responsável por antecipar em cerca de dois anos o fim da Segunda Guerra Mundial, poupando dezenas de milhares de vidas. No entanto, Turing foi condenado por ser homossexual e acabou morrendo pouco depois.

Uma Mente Brilhante (2001)

mente-brilhante

Cena do filme “Uma Mente Brilhante”. (Créditos da imagem: Reprodução).

Neste filme Russell Crowe vive John Nash, matemático norte-americano que trabalhou com a teoria dos jogos e geometria diferencial, foi coroado com o Nobel de Economia em 1994. O filme apresenta de forma sensível sua genialidade matemática, bem como sua luta contra a esquizofrenia.

Criação (2009)

criação

(Cena do filme “Criação”. (Créditos da imagem: Reprodução)

A produção britânica retrata os bastidores da vida de Charles Darwin, baseado no livro “Annies’s Box”, escrito pelo tataraneto de Darwin. O filme é focando no desenvolvimento da obra A Origem das Espécies e os conflitos existenciais que afligiram o naturalista.

Estrelas Além do Tempo (2016)

estrelas-alem-tempo

Cena do filme “Estrelas além do tempo”. (Créditos da imagem: Reprodução)

O filme retrata a história das mulheres negras que trabalharam na NASA, entre elas Katherine Johnson, Dorothy Vaughan e Mary Jackson, e como a equipe foi elemento crucial na equação para a vitória dos Estados Unidos, liderando uma das maiores operações tecnológicas registradas na história americana e se tornando verdadeiras heroínas da nação.

Bom, agora é hora de maratonar! Você conhece outros filmes que deveriam estar nessa lista? Escreve pra gente! =)

palestra-gratuita

Mulheres na Ciência

O legado das mulheres para a ciência é inquestionável. Porém, na pesquisa e tomada de decisões da área científica, elas…

O legado das mulheres para a ciência é inquestionável. Porém, na pesquisa e tomada de decisões da área científica, elas ainda são a minoria. Mas isso não quer dizer que não existam mulheres que fazem, fizeram e ainda vão fazer um trabalho incrível na área.

Já falamos aqui no blog sobre as mulheres que fizeram a diferença na história da ciência — clique aqui para ler — e, não somente no mês que é comemorado o Dia Internacional da Mulher, mas em todos os dias do ano, queremos aumentar a conscientização sobre o trabalho dessas cientistas, incentivando e proporcionando oportunidades iguais para sua participação e liderança em todos os campos científicos! =)

Convite para palestra

Falando em Mulheres na Ciência e a importância de empoderá-las, no dia 14 de março vamos receber aqui no Museu a colaboradora da WEG Tintas, Cristiane Medeiros, que fará uma palestra sobre “Tecnologias Emergentes em Polímeros e Tintas”. Nela, serão tratados temas sobre o processo fabricação de tintas, seu mercado e como a indústria trabalha com inovação, sustentabilidade e polímeros.

Sobre a Cristiane:
Cristiane Medeiros é Chefe na Seção de Desenvolvimento de Resinas e Eletroisolantes / Pesquisa e Inovação Tecnológica.

Responsável pelo desenvolvimento de projetos para resinas/polímeros com aplicação em tintas líquidas, tintas em pó e materiais isolantes (resinas impregnação e esmalte para fios). Gestora da seção de Pesquisa e Inovação Tecnológica da empresa WEG Tintas, buscando novas aplicações e Inovações para a empresa em suas linhas de produtos. Possui amplo conhecimento na área de análises e processos de polímeros.

Formada em Bacharel Química pela Universidade Regional de Blumenau FURB, cursando MBA em Gestão empresarial pela Fundação Getúlio Vargas e Mestranda pela PUC em Inovação e Gestão 3.0

Venha prestigiar o trabalho de mais uma Mulher na Ciência!

Palestra: Tecnologias Emergentes em Polímeros e Tintas
Data: 14/03
Horário: 15h30
Local: Museu WEG

As inscrições podem ser feitas neste link: AQUI
Dúvidas e informações (47) 3276 4550 ou museu@weg.net.

magnetismo

#MomentoCientista: eletromagnetismo terrestre

Você sabia que nosso planeta se comporta como um grande ímã? Essa observação foi feita em 1600, quando o físico…

Você sabia que nosso planeta se comporta como um grande ímã? Essa observação foi feita em 1600, quando o físico e filósofo britânico William Gilbert assinalou essa semelhança. O fenômeno magnético terrestre, no entanto, já era usado há muito tempo, com as famosas bússolas em navegação.

Esse grande imã chamado Terra possui um campo magnético criado através do movimento constante de rotação. Inclusive, é por esse motivo que os polos sul e norte ganharam esse nome: o planeta também possui um magnetismo proveniente do movimento do seu núcleo.

Logo, se soltarmos um imã sobre a Terra, ele irá mostrar os lados norte ou sul, por esse motivo a bússola indica a direção norte, sendo que sua agulha aponta para uma direção de acordo com o magnetismo da Terra. Assim, como o princípio do eletromagnetismo de cargas positivas e negativas, dentro do magnetismo se aproximarmos dois pólos nortes eles se repelem, mas se forem pólos contrários a tendência é a atração.

E sabe o que nos mantém firmes na superfície e também nos protege das partículas de eletromagnetismo que vem do espaço? Ele mesmo: o magnetismo. O campo magnético da Terra protege o planeta dos chamados raios cósmicos, feixes de partículas de altas energias que vêm do Sol. Ao se aproximar da Terra, as partículas carregadas eletricamente são desviadas, devido à interação magnética, em direção aos polos. Essas partículas são desaceleradas ao entrar na atmosfera, emitindo radiação. A visualização desse fenômeno é chamada de AURORA, que pode ser Boreal (Norte) ou Austral (Sul).

Aurora Boreal

Aurora Boreal. Fonte: reprodução.

Podemos comprovar a perfeição de como funciona o magnetismo terrestre através de um experimento com uma bolinha de isopor, um imã e alguns grampos. Quer saber como? Veja neste vídeo como fazer seu próprio protótipo de eletromagnetismo terrestre em casa!

Viu só? É possível ver o magnetismo em 3D e associá-lo ao magnetismo da Terra. Uma experiência simples e muito interessante. Você pode substituir a limalha de ferro por grampos de grampeador “esmagadinhos”. =)

Motor explosão

Como funciona um motor a prova de explosão

Você já ouviu falar sobre motores à prova de explosão? Eles são importantes para ambientes onde existe a presença de…

Você já ouviu falar sobre motores à prova de explosão? Eles são importantes para ambientes onde existe a presença de gases ou vapores que podem entrar em combustão, em caso de contato com faíscas ou temperaturas elevadas.

Quando o assunto é área de risco, o uso de produtos apropriados e a manutenção adequada são exigências obrigatórias para atender normas e padrões de mercado. Porém isso nem sempre é o suficiente para gerenciar as áreas de risco e preservar o patrimônio e a vida das pessoas que trabalham nelas. Atmosferas propícias a uma explosão podem ser encontradas nos mais diversos segmentos da Indústria como o Petroquímico, Alimentício, Usinas de Açúcar e Etanol, Farmacêutico, Têxtil, Papel e Celulose entre tantos outros.

Por esse motivo a WEG possui uma linha de motores trifásicos à prova de explosão, de baixa tensão, W22Xd, resultado de um intenso trabalho de pesquisa e desenvolvimento. A linha incorpora os conceitos inovadores da plataforma W22 com altos níveis de rendimento, economia de energia, baixo custo operacional, vida útil estendida, redução de manutenção e, principalmente, segurança em ambientes com a presença de atmosferas explosivas.

Além de possuir temperaturas de superfície baixas e o máximo de cuidado para evitar faíscas, o motor à prova de explosão é, construtivamente, mais robusto de maneira que, no caso de uma explosão interna ao motor, a chama não se propague para o ambiente causando uma explosão em proporções maiores, “segurando” a explosão em seu interior.

Agora que você já conhece este tipo de motor, veja neste vídeo, em detalhes, a geração de motores à prova de explosão da WEG.

Programa de Capacitação para Professores

Queremos convidar os professores do ensino fundamental e médio das redes municipais, estaduais e particulares a se prepararem para esta experiência.

O início do ano letivo começou e já é hora de preparar as aulas! E, como vocês sabem, nós adoramos receber turmas de alunos por aqui. Por isso, queremos convidar os professores do ensino fundamental e médio das redes municipais, estaduais e particulares a se prepararem para esta experiência.

O Museu WEG de Ciência e Tecnologia sempre realizou visitas guiadas para grupos, sendo em sua maioria grupos escolares e, desde 2014, passou a desenvolver e aplicar ações educativas voltada às escolas, com temáticas, programação e conteúdos específicos, a fim de dinamizar o processo de comunicação dos espaços do museu, tornando estas ações em ferramentas educacionais e melhorando a comunicação entre museu e escola.

Pensando em capacitar professores para o melhor aproveitamento das ações educativas do museu, foi criado o Programa de Capacitação para Professores. O programa oportuniza o professor a conhecer a exposição previamente e as ações desenvolvidas no museu, descobrindo os potenciais do espaço para tornar este momento uma extensão da sala de aula.

Do mesmo modo, o Programa engaja o professor para que dê continuidade sobre a temática trabalhada em sala de aula e o responsabiliza em orientar o aluno para que ele aprenda de uma maneira mais autônoma e construa a sua experiência e o seu conhecimento durante a visita, aproximando-o da realidade e criando conexões.

O Programa de Capacitação para Professores acontece no Museu WEG, possui 3 horas de duração e será no dia 18 de março, segunda-feira, em dois horários: a primeira turma às 13h30 e a segunda turma às 18h30. Haverá entrega de certificado de participação.

Inscrições:

De 12/02 a 12/03, via Google Docs: https://goo.gl/forms/0kdw58tKTQ2h7NYv1

Qualquer dúvida, entre em contato pelo telefone: 3276-4550

A capacitação será realizada em dois períodos, sendo um a tarde e outro a noite, o professor poderá escolher qual período quer participar no link da inscrição. Professores já capacitados podem realizar uma nova capacitação, pois haverá novidades na programação.

Mas atenção: os agendamentos de visitas ao museu para o decorrer de 2019, deverão ser feitos a partir do dia 19/03!

Esperamos vocês! =)

Os novos selos em homenagem a cientistas brasileiros

Confira quais os cientistas serão impressos numa edição limitada de selos dos Correios.

06 de fevereiro de 2019
...

Se tem uma coisa que nos anima é ver cientistas sendo reconhecidos e homenageados. E a animação aumenta ainda mais quando descobrimos que eles são brasileiros! Por isso, não podemos deixar de destacar que Os Correios lançaram novos selos homenageando dois cientistas tupiniquins. Com uma tiragem de 360 mil selos e valor de R$ 1,85 cada, além de servirem como comprovação do pagamento do serviço postal, há quem compre para colecionar, você conhece algum colecionador? Conta pra ele!

 

Cesar Lattes

 Um dos cientistas é o físico Cesar Lattes, responsável pela descoberta do méson pi, uma partícula subatômica, que o levou ao Nobel de Física de 1950. No entanto, o prêmio foi injustamente concedido ao físico britânico Cecil Frank Powell, acredita? Sobre o acontecido, em entrevista ao Jornal da Unicamp, em 2001, Lattes disse:

“Sabe por que eu não ganhei o prêmio Nobel? Em Chacaltaya, quando descobrimos o méson-pi, se publicou: Lattes, Occhialini [Giuseppe Occhialini] e Powell [Cecil Powell, físico britânico que ganhou o Nobel em 1950 por fotografar os núcleos atômicos e pela descoberta do méson]. E o Powell, malandro, pegou o prêmio Nobel pra ele. Occhialini e eu entramos pelo cano. Ele era mais conhecido, tinha o trabalho da produção de pósitrons em 1933. Depois fui para a Universidade da Califórnia, onde foi inaugurado o sincrociclotron em 1946. Já era 1948 e estava produzindo mésons desde que entrou em funcionamento em 46, tinha energia mais que suficiente. Então, detectamos, Garden [Eugene Garden] e eu, o méson artificial, alimentando a presunção de retirar do empirismo todas as pesquisas que se relacionassem com a libertação da energia nuclear. Sabe por que não nos deram o Nobel? Garden estava com beriliose, por ter trabalhado na bomba atômica durante a Guerra, e o berílio tira a elasticidade dos pulmões. Morreu pouco depois e não se dá o prêmio Nobel para morto. Me tungaram duas vezes.”

Lattes teve um notável trabalho na física nuclear, e grande importância na constituição da estrutura administrativa científica brasileira. Em 1946 criou o Centro Brasileiro de Pesquisas Físicas (CBPF). Também exerceu grande importância na criação do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). O nome do físico batizou a plataforma Lattes, sistema utilizado para cadastrar os currículos de cientistas brasileiros.

 

Johanna Döbereiner

 A engenheira agrônoma Johanna Döbereiner, pioneira nos estudos de biologia do solo, é também homenageada com um selo. Apesar de nascida na República Checa, Johanna veio ao Brasil em 1948, após vários obstáculos enfrentados com os males da Segunda Guerra e pós-guerra, como perseguições. Foi no Brasil que ela aprendeu a fazer ciência. Cientista mulher e imigrante numa era extremamente machista e xenofóbica, ela se destacou e recebeu inúmeros prêmios. Sendo indicada ao Nobel de Química em 1997.

Em entrevista ao Jornal Globo em 1979, destacou:

“A gente veio como imigrante, sabendo que escolheu o Brasil como pátria e não para mudar nada. Eu sabia que estava sem pátria e vim aqui procurar uma nova pátria. Então vim com mentalidade positiva”.

 Uma das maiores contribuições de Johanna, foi o melhoramento da produção de soja com a Fixação Biológica de Nitrogênio (FBN). Seus estudos diminuíram nossa dependência de fertilizantes nitrogenados, propiciando-nos a produção de soja mais barata do mundo e fazendo uma produção mais ecologicamente sustentável.

Em entrevista à revista Veja, em 1996, Döbereiner disse que “na década de 60, ir contra a adubação química era quase um sacrilégio. Os fertilizantes estavam revolucionando a agricultura. Só muito tempo depois vi que nossas pesquisas não só permitiam uma produção mais barata como também mais ecológica, porque não poluía os rios nem o solo”.

 Gostou de descobrir um pouquinho mais sobre esses dois cientistas? Os dois selos são interligados por um elemento em comum: um átomo. As ilustrações buscam representar as contribuições dos dois para a ciência. Quer descobrir mais sobre o mundo da Ciência e Tecnologia? Acompanhe nossa página no Facebook.

 

Referência: Ciencianautas.com